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1 Overview

Work package 6 (WP6) represents the generative block of the SkAT-VG project. In the ideal
SkAT-VG workflow, the sound designer prompts the system to recognize her vocal and gestural
imitation within a dataset of referent sounds, sorted in perceptually discriminable categories.
Vocalizations and gestures are used in a first stage to select a sound category, and in a second
stage to control and refine its synthetic counterpart. Within this general workflow, WP6 is
responsible for the development of

1. sound synthesis tools able to simulate the sound sources represented by imitations;

2. high-level control strategies and layers to combine the sound models and to manipulate
their parameters using vocalization and gestures;

3. software architectures and user interface modules (UI) to facilitate the activity of the
sound designer.

WP6 activities are therefore firstly devoted to the development of timbral families, namely
collections of sound models and relative parameter spaces designed to accurately represent the
corresponding sound categories which have been experimentally assessed in WP4 as unam-
biguously discriminable in terms of interaction, temporal and timbral properties. Physically-
informed modeling is being adopted as the main sound synthesis paradigm, according to the
general ecological approach of the SkAT-VG project. Secondly, WP6 is also concerned with
the extraction of features and descriptors from the user’s input, and their mapping to the
parameter spaces of the defined timbral families to dynamically control the sound synthesis
using vocalizations and gestures. Finally, WP6 takes care of the integration of the selection
classifier being developed in WP5 with the temporal control layer and the synthesis tools de-
scribed above, to produce a general user interface framework for the intuitive exploration of
voice-driven sound design spaces. The three tasks, spanned over the whole duration of the
work package, represent the development steps towards the final achievement of an automatic
system for the generation of sound sketches.

1.1 Achievements

WP6 officially started in March 2015, although some activities were anticipated to the first
year to support activities in WP4 and WP7. The deliverable presents two pieces of software,
being developed in the project:

1. The Sound Design Toolkit (SDT) – a collection of interactive, physics-based sound
models suitable to synthesize a variety of acoustic phenomena, mechanical interactions
and machines;

2. SkAT Studio – a general UI framework, developed in Max, for the integration of the
several SkAT-VG blocks as loadable modules within custom audio processing workflows.

The current status of WP6, which is reflected in the activity schedule shown in Figure 1, is
the following:

Project Title: SkAT-VG
Project Coordinator: Davide Rocchesso (IUAV)

8/59Contract No. FP7-ICT-2013-C FET-618067
www.skatvg.eu



Version 1.0, December 28, 2016

• The SDT legacy code has been ported into a new software architecture;

• The SDT sound models have been reorganized into a new taxonomy, reflecting the state
of the art on the classification of environmental sounds;

• The SDT palette of physics-based sound synthesis algorithms has been expanded, to
provide an exhaustive framework and a modular lexicon of sound models. This achieve-
ment is functional to the definition of timbral families, namely peculiar parametrizations
of a collection of one or more sound synthesis models, unambiguously discriminated in
terms of interaction, temporal and timbral properties;

• Timbral families have been defined and developed as Max patches. Emerged as synthetic
counterparts of the perceptually relevant sound categories defined by WP4, timbral
families are also sorted in three main classes: Machines, Mechanical interactions and
Abstract sounds;

• Sound analysis tools specifically tailored for vocal control of the sound synthesis models,
as well as post-processing modules functional to the design of the timbral families, have
been developed as Max externals;

• The SkAT Studio framework and modules are being refined to improve the stability of
the system and the effectiveness of the workflow.
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Figure 1: Timing of WP6 activities. Items in red are completed, in orange are in progress, and
in gray are planned.
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2 The Sound Design Toolkit

The Sound Design Toolkit (SDT) is a software package that provides a palette of sound models
that can be exploited in sonic interaction design research. It can be described as a virtual Foley
pit which can be used to sketch sonic interactive experiences in a variety of contexts, from
gaming, to product design, to audio-visual shows.

2.1 Objectives

Goal of the SDT is to provide an advanced, perception-oriented and physically-consistent
sound synthesis toolbox, tailored to sound design thinking and practice [DPR10]. The SDT
development is carried out in order to accomplish a three-folded objective:

1. Providing a collection of sound models that covers a mixture of acoustic phenomena,
basic mechanical interactions (i.e., everyday sounds) and machines, which are relevant
from the perceptual and design practice perspectives;

2. Providing a procedural approach to sound generation, responding to the requirements
of design thinking in terms of expressiveness, and immediacy of use in sonic sketching
and prototyping;

3. Providing a computationally affordable software environment for real-time applications
on ordinary hardware.

The first objective deals with i) the selection of those categories of sounds that cover the major
applications of sound design and that are relevant for the listeners, ii) the understanding of
the underlying sound-generating physical processes, iii) providing physically-informed synthetic
sonic spaces which are wide, malleable and intuitive enough to foster creativity in sound design.

The second objective is accomplished by providing a physically-informed approach that
emphasizes the role of sound as a behavior, a process rather than a product. By growing on
the metaphor of drawing, each sound model can be seen as a colored pencil, readily available
to the sound designer for sketching and prototyping. The generated sound is the resultant
of computed descriptions of mechanical interactions occurring between virtual sounding ob-
jects with specific configurations, materials and geometries. These simulations of real world
phenomena yield acoustic results which are easily predictable resorting to basic everyday expe-
rience. Efforts are focused on providing economical control layers and parameter spaces that
interpret and map the physical descriptions in an intuitive way.

The above requirements favor the accomplishment of the third objective: Auditory percep-
tual relevance, cartoonification (i.e., simplification of the underlying physics and exaggeration
of its most relevant aspects), and parametric control are exploited as specific design constraints
of economy of means and reduction of parameters, in order to increase both computational
efficiency and perceptual clarity.
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2.2 History

The SDT was originally developed at the University of Verona in the scope of the two EU
projects Sounding Object (SOb, 2001 - 2003), and CLOSED (Closing the loop of Sound
Evaluation and Design, 2006 - 2009), and maintained later at IUAV [Roc14].

In the SOb project, the first version of a PureData1 library of physics-based sound models
was developed and demonstrated in tasks of human-object continuous interaction [RF03]. Aim
of the project was to investigate the objective nature of audible objects, in terms of invariants
of the structure and behavior of the sound sources. The elementary sound models of impact,
friction and derived textures and events such as crumpling, rolling and bouncing were devel-
oped to stress the possibilities of sound-mediated interaction and non-visual displays. This
highlighted the importance of dynamic sound models in interfaces, whose acoustic manifes-
tations do not need to be realistic to be perceived as physically consistent. The SOb project
set the framework of the SDT, in terms of the basic requirements for its development (i.e.,
perceptual relevance and cartoonification, dynamic control).

In the CLOSED project, further development of the SDT (sound models and GUIs) was
instrumental to investigate a structured and iterative process of product sound design, from
sound ideas generation, to sound creation and evaluation [DR14]. The library was reorga-
nized according to a taxonomy of everyday sounds, based on Gaver’s framework [Gav93], and
expanded to include sound models of liquid interactions. The pre-existing library, inherited
from the SOb project, was made available to be compiled as both PureData and Max2 ex-
ternals on Mac, Windows and Linux operating systems. A front-end application in Max 4
was developed and extensively used in various interactive installations, workshops and research
activities [RPD09, DPR10]. Since 2010, the SDT has been maintained by IUAV, where the
core libraries and front-end applications have been updated for the latest releases of Max and
PureData.

In the SkAT-VG project, the sound palette has been further enriched and the whole library
radically re-wrapped. The taxonomy of sound models has been completed with the families
of aerodynamic interactions (e.g., gasses, explosions, types of airflows) and machines (e.g.,
combustion engine, DC motor), and organized to reflect the state of the art on the perception
of everyday sounds. In general, the new software architecture emphasizes the malleability and
modularity of the sound models as basic bricks to design the sound of more complex machines
and mechanical interactions, yet preserving a stable auditory representation in listeners. A
complete re-design of the patches and front-end application in the Max environment is aimed
at strengthening and supporting the seamless ubiquity of sound design thinking. In addition,
the toolkit has been enhanced by a set of sound processors (pitch shifter and reverb), and audio
features extractors (fundamental frequency estimator, envelope follower, spectral analyzer),
developed within the SkAT-VG project to respectively support the definition of the timbral
families and the vocal control of the sound synthesis models.

1http://puredata.info
2https://cycling74.com/products/max/
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2.3 Software architecture

The legacy Sound Design Toolkit was coded in C/C++ using flext3, a layer for cross-platform
development of Max and PureData externals. This choice allowed to build the SDT software
for both environments on Mac, Windows and Linux with minimum effort. Unfortunately,
the development tracks of Max and PureData kept diverging over the years, up to a point
where the flext middleware became outdated and cross-compilation became a problematic
task. Moreover, the use of flext limited the availability of the Sound Design Toolkit to Max
and PureData, impeding the use of its algorithms and synthesis models in projects built with
different platforms.

In the SkAT-VG project, the Sound Design Toolkit was extended with new features, its
software architecture was also completely redesigned and its legacy source code was entirely
ported in the new framework. The system is now composed of:

1. A core library coded in ANSI C, with few and widely supported dependencies, exposing
a clean and streamlined API to all the implemented synthesizers, signal processors and
timbre descriptors;

2. A set of wrappers for Max (version 6 or above) and PureData, providing access to most
of the SDT framework features by means of externals;

3. A collection of Max patches and help files, providing a user-friendly GUI and an extensive
user documentation for the whole framework.

This modular and hierarchical structure makes the code extremely portable and consistent
in its behavior across different platforms and operating systems. Although the integration with
Max is the most actively supported, the C API exposed by the core library can be used on its
own in a wide variety of developing environments, greatly expanding the number of possible
application domains for the system.

3http://grrrr.org/research/software/flext/
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2.4 Downloading and installing

2.4.1 System requirements

The Sound Design Toolkit runs on Windows and Mac OS X with Max version 6 or above. It also
runs on Windows, Mac OS X and Linux with PureData version 0.41.4 or above. Max can be
downloaded and installed from the official Cycling ’74 website (http://www.cycing74.com),
while PureData can be downloaded from http://puredata.info/downloads/pure-data.

2.4.2 Precompiled binaries

Precompiled binaries are available for Windows and Mac OS X as Max and PureData externals.
Simply download the universal SDT package for from the official website:

http://www.soundobject.org/SDT

then unpack it and copy the branch for your operating system and platform into the
Packages folder of your Max installation.

2.4.3 Compiling from source

In alternative, the Sound Design Toolkit source code can be obtained cloning the SDT repos-
itory using Git:

git clone https://github.com/SkAT-VG/SDT.git

The compilation process is extremely simple and fully automated thanks to GNU Make4

and custom Makefiles for each specific platform. To build the software package, please refer
to the instructions for your operating system:

Mac OS X

1. In a terminal, type the following commands to compile the software:

cd build/macosx

make

2. Install one or more products (Max package, Pd library or Apple framework). The script
will install the desired product in the given DSTDIR path, creating a SDT subfolder:

make install_max DSTDIR=<path>

make install_pd DSTDIR=<path>

make install_core DSTDIR=<path>

3. As an optional step, clean the source directories after compilation:

make clean

4https://www.gnu.org/software/make/
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Windows To compile the Sound Design Toolkit under Windows, you need a distribu-
tion of the GNU C Compiler and a UNIX style shell, as provided in MinGW + MSYS
(http://www.mingw.org, recommended) or Cygwin (http://www.cygwin.com).

1. Once the compilation environment is installed, open its shell and issue the following
commands to compile the software:

cd build/windows

make

2. Install one or more products (Max package, Pd library or DLL library). The script will
install the desired product in the given DSTDIR path, creating a SDT subfolder:

make install_max DSTDIR=<path>

make install_pd DSTDIR=<path>

make install_core DSTDIR=<path>

3. As an optional step, clean the source directories after compilation:

make clean

Linux

1. In a terminal, type the following commands to compile the software:

cd build/linux

make

2. Install the SDT. By default, the script will install a shared library in /usr/lib and a
collection of PureData externals and patches in /usr/lib/pd/extras/SDT:

make install

Root privileges may be required to access the default install path. If you want to change
it, provide a PREFIX argument:

make install PREFIX=<path>

3. As an optional step, clean the source directories after compilation:

make clean
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2.5 Front-end application and GUI

The current version of the SDT is being developed as front-end application and patches in the
Max environment, version 6 or above. The organization of the patches follows the standard
convention for the release of Max packages5.

The SDT overview patch, available as an item in the extras menu and shown in Figure 2,
lists all the sound models, currently available as Max externals, arranged according to the type
of interaction primitives (i.e., vibrating solids, liquids, gasses) and the hierarchy of dependencies
occurring between the low-level sound models and the derived basic textures and processes.
In addition, the SDT overview shows the available sound processors and spectrum analyzers,
included in the package release.

Figure 2: The display of the available sound models, in the SDT overview extras patch,
reflects the types of underlying interaction primitives, and the dependencies between the low-
level models and the textures / processes that can be directly derived.

Help patches for each sound model can be recalled by clicking on the corresponding
sdt.name∼ gray button. As an example, Figure 3 shows the help patch for the impact sound
model, which describes a non-linear impact between one inertial object (sdt.inertial∼) and
one modal object (sdt.modal∼), according to the characteristics of the collision set in the
interactor (sdt.impact∼). For a detailed description of the resonator–interactor–resonator
mechanism adopted to simulate basic interactions between solid objects, please refer to section
2.7.1.

A convention shared by all the sound models is the exploitation of Max attributes to drive all
the parameters updated at control rate. In addition, each patch is provided with a detailed de-
scription of the involved externals (i.e., input, output, arguments and attributes), as described

5https://docs.cycling74.com/max7/vignettes/packages.
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Figure 3: The help patch of the impact sound model.

in section 2.6, accessible by double-clicking on the [p readme-Input-Output-Arguments]

blue framed box.
Finally, the SDT front-end application6 is undergoing a deep redesign, in order to make

readily available all the features provided by the new SDT software architecture, and to ensure
forward compatibility with the recent release of Max 7 by Cycling ’74.

6see https://vimeo.com/album/2105400/video/51050158 for an introduction to the release based on
the legacy software architecture.
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2.6 Externals

2.6.1 Basic interactions between solids

[sdt.inertial] Physical model of an inertial mass.

Initialization arguments (mandatory) :

1. (symbol) Unique user-defined resonator ID.

Inlets:

1. strike (float) (float): Reset displacement and velocity to the given values.

Attributes :

@mass: (float) Mass of the inertial object, in Kg,

@fragmentSize: (float) Fraction of the whole object, mostly used by the crumpling
algorithm to simulate fragmentation [0.0, 1.0].

[sdt.modal] Physical model of a modal resonator.

Initialization arguments (mandatory):

1. (symbol) Unique user-defined resonator ID,

2. (int) Number of available modes,

3. (int) Number of available pickup points.

Attributes:

@freqs: (list of float) Frequency of each mode, in Hz,

@decays: (list of float) Decay of each mode, in s,

@fragmentSize: (float) Fraction of the whole object, mostly used by the crumpling
algorithm to simulate fragmentation [0.0, 1.0],

@activeModes: (int) Number of currently active modes out of all the available ones,

@pickup0, @pickup1, ... : (list of float) Modal weights for each pickup, in 1/Kg.
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[sdt.impact∼] Nonlinear impact model between two resonators.

Initialization arguments (mandatory):

1. (symbol) Resonator ID of the first object,

2. (symbol) Resonator ID of the second object,

3. (int) Number of outlets, which should correspond to the total number of pickups.

Inlets:

1. (signal) External force applied to the first object, in N,

2. (signal) If not 0 instantaneously puts objects in contact and sets the first object
velocity, in m/s,

3. (signal) Fragment size of the first object [0.0, 1.0],

4. (signal) External force applied to the second object, in N,

5. (signal) If not 0 instantaneously puts objects in contact and sets the second object
velocity, in m/s,

6. (signal) Fragment size of the second object [0.0, 1.0].

Outlets:
Pickup displacements for first and second object, ordered left to right. If there are fewer
outlets than pickups, some outputs will not be available. Outlets in excess will constantly
output 0.

Attributes:

@stiffness: (float) Impact stiffness,

@dissipation: (float) Dissipation coefficient, [0.0, 1.0],

@shape: (float) Contact shape factor (1.5 for spherical objects),

@contact0: (int) Pickup index of the contact point for the first object,

@contact1: (int) Pickup index of the contact point for the second object.
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[sdt.friction∼] Elastoplastic dynamic friction model between two resonators.

Initialization arguments (mandatory):

1. (symbol) Resonator ID of the first object,

2. (symbol) Resonator ID of the second object,

3. (int) Number of outlets, which should correspond to the total number of pickups.

Inlets:

1. (signal) External force applied to the first object, in N,

2. (signal) If not 0 instantaneously puts objects in contact and sets the first object
velocity, in m/s,

3. (signal) Fragment size of the first object [0.0, 1.0],

4. (signal) External force applied to the second object, in N,

5. (signal) If not 0 instantaneously puts objects in contact and sets the second object
velocity, in m/s,

6. (signal) Fragment size of the second object [0.0, 1.0].

Outlets:
Pickup displacements for first and second object, ordered left to right. If there are fewer
outlets than pickups, some outputs will not be available. Outlets in excess will constantly
output 0.

Attributes:

@stiffness: (float) Bristle stiffness,

@dissipation: (float) Bristle dissipation,

@viscosity: (float) Bristle viscosity,

@noisiness: (float) Amount of sliding noise,

@kStatic: (float) Static friction coefficient [0.0, 1.0],

@kDynamic: (float) Dynamic friction coefficient [0.0, 1.0],

@breakAway: (float) Break-away coefficient,

@stribeck: (float) Stribeck velocity, in m/s,

@force: (float) Normal force between the two objects, in N,

@contact0: (int) Pickup index of the contact point for the first object,

@contact1: (int) Pickup index of the contact point for the second object.
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2.6.2 Compound interactions between solids: textures and processes

[sdt.bouncing∼] Impact model controller for bouncing sounds.

Inlets:

1. (bang) Triggers a bouncing process.

Outlets:

1. (signal) Impact velocity, in m/s.

Attributes:

@restitution: (float) Restitution coefficient [0.0, 1.0],

@height: (float) Initial height of the bouncing object, in m,

@irregularity: (float) Shape irregularity (divergence from a sphere) [0.0, 1.0].

[sdt.breaking∼] Impact model controller for discrete breaking sounds.

Inlets:

1. (bang) Triggers a breaking process.

Outlets:

1. (signal) Impact velocity, in m/s,

2. (signal) Fragment size, compared to the whole object size [0.0, 1.0].

Attributes:

@crushingEnergy: (float) Energy of the micro-impacts [0.0, 1.0],

@granularity: (float) Crumpling granularity [0.0, 1.0],

@fragmentation: (float) Tendency of the object to break into smaller pieces [0.0, 1.0].

[sdt.crumpling∼] Impact model controller for continuous crumpling sounds.

Outlets:

1. (signal) Velocity of micro impacts, in m/s,

2. (signal) Fragment size, compared to the whole object size [0.0, 1.0].

Outlet values are meant to be appropriately assigned and rescaled to control the param-
eters of two impacting objects.

Attributes:

@crushingEnergy: (float) Energy of the micro-impacts [0.0, 1.0],

@granularity: (float) Crumpling granularity [0.0, 1.0],

@fragmentation: (float) Tendency of the object to break into smaller pieces [0.0, 1.0].
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[sdt.rolling∼] Impact model controller for rolling sounds.

Inlets:

1. (signal) Rolling surface profile.

Outlets:

1. (signal) Normal force acting on the rolling object, in N.

Attributes:

@depth: (float) Depth of the surface irregularities, affects the amplitude of the micro-
impacts,

@grain: (float) Surface granularity, affects the density of the micro-impacts,

@mass: (float) Mass of the rolling object,

@velocity: (float) Rolling velocity of the object.

[sdt.scraping∼] Friction model controller for scraping sounds.

Inlets:

1. (signal) Scraped surface profile.

Outlets:

1. (signal) Normal force acting on the surface, meant to be directly applied to a
resonator. Friction with another object can also simulate rubbing phenomena.

Attributes:

@grain: (float) Horizontal smoothness of the surface grain,

@force: (float) Normal force applied to the scraping probe,

@velocity: (float) Velocity of the probe.
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2.6.3 Bubbles and liquid sounds

[sdt.bubble∼] Single bubble model.

Inlets:

1. (bang) Triggers a bubble.

Outlets:

1. (signal) Bubble sound.

Attributes:

@radius: (float) Bubble radius, in mm [0.15, 150.0],

@riseFactor: (float) Audible rise in frequency, ∼0.1 for bubbles in water [0.0, 3.0].

[sdt.fluidflow∼] Liquid sounds model, as a stochastic population of bubbles.

Initialization arguments (optional):

1. (int) Object polyphony. Default number of voices is 128.

Outlets:

1. (signal) Liquid sound.

Attributes:

@avgRate: (float) Average number of bubbles per second [0.0, 100000.0],

@minRadius: (float) Minimum bubble radius, in mm [0.15, 150.0],

@maxRadius: (float) Maximum bubble radius, in mm [0.15, 150.0],

@expRadius: (float) Bubble radius gamma factor, determines the distribution of bubble
radii across the range [0.0, 10.0],

@minDepth: (float) Minimum bubble elevation (deep) [0.0, 1.0],

@maxDepth: (float) Maximum bubble elevation (shallow) [0.0, 1.0],

@expDepth: (float) Bubble depth gamma factor, determines the distribution of bubble
elevations across the range [0.0, 10.0],

@riseFactor: (float) Audible rise in frequency, ∼0.1 for bubbles in water [0.0, 3.0].

@riseCutoff: (float) Bubbles below this elevation do not change frequency [0.0, 1.0].
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2.6.4 Wind and gas turbulence

[sdt.windflow∼] Turbulence model of gases impacting against a surface.

Inlets:

1. (signal) Gas velocity [0.0, 1.0].

Outlets:

1. (signal) Turbulence sound.

[sdt.windcavity∼] Turbulence model of gases passing through cylindrical cavities.

initialization arguments (optional):

1. (int) Buffer size of the internal comb filter, in samples. Default is 44100, which
allows for a maximum cavity length of ∼343 m at a sampling rate of 44.1 kHz.

Inlets:

1. (signal) Gas velocity [0.0, 1.0].

Outlets:

1. (signal) Turbulence sound.

Attributes:

@length: (float) Cavity length, in m,

@diameter: (float) Cavity diameter, in m.

[sdt.windkarman∼] Turbulence model of gases flowing across thin objects, such as branches
or wires.

Inlets:

1. (signal) Gas velocity [0.0, 1.0].

Outlets:

1. (signal) Turbulence sound.

Attributes:

@diameter: (float) Object diameter, in mm.
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2.6.5 Supersonic explosions

[sdt.explosion∼] Supersonic explosion model.

initialization arguments (optional):

1. (int) Average length of the reverberation delay lines, in samples. Default is 44100,
which allows for a maximum scatter time of ∼100 s at a sampling rate of 44.1
kHz,

2. (int) Length of the propagation delay lines, in samples. Default is 4410000, which
allows for a maximum propagation time of ∼100 s at a sampling rate of 44.1 kHz.

Inlets:

1. (bang) Triggers an explosion.

Outlets:

1. (signal) Shockwave sound,

2. (signal) Blast wind sound,

Attributes:

@blastTime: (float) Initial pressure peak duration, in s,

@scatterTime: (float) Turbulent tail duration, in s,

@dispersion: (float) Amount of turbulence [0.0, 1.0],

@distance: Distance of the explosion from the listener, in m,

@waveSpeed: Shockwave propagation velocity, in m/s,

@windSpeed: Blast wind propagation velocity, in m/s.
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2.6.6 Combustion engines

[sdt.motor∼] Combustion engine model.

initialization arguments (optional):

1. (int) Buffer size of the internal digital waveguides, in samples. Default is 44100,
which allows for a maximum length of ∼343 m for each tube section at a sampling
rate of 44.1 kHz.

Inlets:

1. (signal) Engine Revolutions Per Minute (RPM),

2. (signal) Throttle load [0.0, 1.0].

Outlets:

1. (signal) Intake sound, from the front of the vehicle,

2. (signal) Engine vibrations, from the inside of the vehicle,

3. (signal) Exhaust sound, from the back of the vehicle.

Attributes:

@nCylinders: (int) Number of cylinders in the engine block [1, 12],

@cycle: (int) 0 to select four-stroke, 1 to select two-stroke,

@sparkTime: (float) Fuel ignition time, compared to a full cycle [0.000001, 1.0],

@compressionRatio: (float) Engine compression ratio [5.0, 20.0],

@asymmetry: (float) Engine eccentricity [0.0, 1.0].

@cylinderSize: (float) Volume of each cylinder, in cc.

@intakeSize: (float) Average length of the intake collectors, in m,

@extractorSize: (float) Average length of the exhaust collectors, in m,

@exhaustSize: (float) Length of the main exhaust pipe, in m,

@expansion: (float) Impedance mismatch between extractors and exhaust pipe, present
in two-stroke engines to limit the expulsion of unburnt fuel [0.0, 1.0].

@mufflerSize: (float) Average size of the muffler resonators, in m.

@mufflerFeedback: (float) Muffler efficiency [0.0, 1.0].

@outletSize: (float) Length of the exhaust outlet, in m.

@backfire: (float) Amount of backfiring when the engine revs down [0.0, 1.0]
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2.6.7 Electric motors

[sdt.dcmotor∼] Electric motor model.

initialization arguments (optional):

1. (int) Buffer size of the internal comb filter, in samples. Default is 44100, which
allows for a maximum chassis length of ∼343 m at a sampling rate of 44.1 kHz.

Inlets:

1. (signal) Rotor Revolutions Per Minute (RPM),

2. (signal) Mechanical load on the rotor [0.0, 1.0].

Outlets:

1. (signal) Electric motor sound,

Attributes:

@coils: (int) Number of coils on the rotor,

@harshness: (float) Spectral density [0.0, 1.0],

@size: (float) Chassis length, in m,

@reson: (float) Chassis resonance [0.0, 1.0],

@gearRatio: (float) Gear ratio,

@rotorGain: (float) Amount of noise coming from the rotor [0.0, 1.0],

@brushGain: (float) Amount of noise coming from the brushes [0.0, 1.0],

@gearGain: (float) Amount of noise coming from the gears [0.0, 1.0],

@airGain: (float) Amount of air turbulence caused by the spinning rotor [0.0, 1.0].
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2.6.8 Sound post-processing and analysis

[sdt.reverb∼] Maximally diffusive yet efficient Feedback Delay Network (FDN) reverb, as
presented in [Roc97].

initialization arguments (optional):

1. (int) Average length of the reverberation delay lines, in samples. Default is 44100,
which allows to simulate room dimensions up to ∼343 m at a sampling rate of
44.1 kHz.

Inlets:

1. (signal) Dry signal.

Outlets:

1. (signal) Reverb signal.

Attributes:

@xSize: (float) Room width, in m,

@ySize: (float) Room height, in m,

@zSize: (float) Room depth, in m,

@randomness: (float) Shape deviation from a rectangular room [0.0, 1.0],

@time: (float) Global reverberation time, in s,

@time1k: (float) Reverberation time at 1kHz, in s.

[sdt.pitchshift∼] Time domain pitch shifter, as presented in [Zoe02].

initialization arguments (optional):

1. (int) Size of the internal buffer, in samples. Default is 4096.

Inlets:

1. (signal) Original signal.

Outlets:

1. (signal) Pitch shifted signal.

Attributes:

@ratio: (float) Pitch shifting ratio.
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[sdt.envelope∼] Simple envelope follower, based on a one-pole lowpass filter with different
attack and release times.

Inlets:

1. (signal) Input signal.

Outlets:

1. (signal) Signal envelope.

Attributes:

@attack: (float) Attack time, in ms,

@release: (float) Release time, in ms.

[sdt.myo∼] Vocal myoelastic activity detector.

Inlets:

1. (signal) Input signal.

Outlets:

1. (float) Myoelastic activity amount [0.0, 1.0],

2. (float) Myoelastic average frequency, in Hz.

Attributes:

@lowFrequency: (float) Long term envelope cutoff, in Hz,

@highFrequency: (float) Short term envelope cutoff, in Hz,

@threshold: (float) Signal gate [0.0, 1.0].

[sdt.pitch∼] Fundamental frequency estimator based on NSDF [MW05].

initialization arguments (optional):

1. (int) Analysis window length, in samples. Default is 4096.

Inlets:

1. (signal) Input signal.

Outlets:

1. (float) Detected pitch, in Hz,

2. (float) Pitch clarity [0.0, 1.0].

Attributes:

@overlap: (float) Window overlap ratio [0.0, 1.0],

@tolerance: (float) Peak tolerance [0.0, 1.0].
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[sdt.spectralfeats∼] Spectral analyzer, extracting several audio descriptors.

initialization arguments (optional):

1. (int) Analysis window length, in samples. Default is 4096.

Inlets:

1. (signal) Input signal.

Outlets:

1. (list) Spectral magnitude, centroid, spread, skewness, kurtosis, flatness, flux,
whitened/rectified flux (useful for detecting onsets).

Attributes:

@overlap: (float) Window overlap ratio [0.0, 1.0]

@minFreq: (float) Lowest frequency included in the analysis, in Hz (0 for DC),

@maxFreq: (float) Highest frequency included in the analysis, in Hz (0 for Nyquist).

[sdt.zerox∼] Extract the zero crossing rate of an input signal.

initialization arguments (optional):

1. (int) Analysis window length, in samples. Default is 4096.

Inlets:

1. (signal) Input signal.

Outlets:

1. (float) Normalized zero crossing rate [0.0, 1.0].

Attributes:

@overlap: (float) Window overlap ratio [0.0, 1.0]
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2.7 The SDT taxonomy of sound models

Figure 4 shows the organization of the synthesis models available in the Sound Design
Toolkit. Originally based on a revised version of Gaver’s perceptual organization of every-
day sounds [Gav93, DPR10], the framework has been updated to stress the sophistication of
the physics-based algorithms as privileged viewpoint, and reflects the state of the art on the
categorization of environmental sounds [LHMS10, HLM+12].

Figure 4: The SDT taxonomy of sound models. The bottom-up hierarchy represents the
dependencies between low-level models and temporally-patterned textures and processes, for
the four classes of sounds, solids, liquids, gasses, and machines.

In practice, a bottom-up hierarchy of sound models is established, as shown in the graph
of figure 4. The first level presents the basic algorithms with the corresponding Max externals,
suitable for the generation of a large family of simple sound events. The second level highlights
the temporally-patterned events (with the corresponding Max externals), basic textures and
processes, that can be straightly derived from the exploitation of the low-level models.

The available sound models are grouped according to a criterion of causal similarity, in
four main classes of sounds, that is 1) vibrating solids, 2) liquids, 3) gasses, and 4) machines.
As a note, the fourth class (machines) is arranged in the second level, since the available
corresponding sound models describe complex mechanisms that would have been too onerous
and cumbersome to develop as a Max chain of separate basic events (i.e., low-level models).
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In addition, the blue arrows set a direct connection between the sonic space of each model
and a higher-level classification of referent sounds that have been identified as cognitively
stable in listeners’ representations. These perceptually-relevant sound categories, available in
the current release of the SDT framework, are further grouped into the two main families of
Machines and Mechanical Interactions (see SkAT-VG Deliverable D.4.4.1 for more details).
As seen from the SDT taxonomy viewpoint, a peculiar parametrization of single sound models
or a specific configuration of more models, which describe a perceptually-relevant category of
sound, unambiguously discriminated in terms of interaction, temporal and timbral properties,
define a timbral family7 (see further subsection 2.8). To conclude, the new SDT framework
stresses the modularity of the sound models (low-level and temporally-patterned), with prac-
tical implications in terms of a reliable selection and manipulation of the synthetic referent
sounds.

2.7.1 Basic interactions between solids

The solids sound models represent the main legacy part of the SDT library, as described in sec-
tion 2.2, yet they have been completely re-designed and re-written, as described in section 2.3.
The algorithms share a common, modular structure “resonator–interactor–resonator”, repre-
senting the interaction between two resonating objects, as shown in figure 5.The currently
available object models are:

Inertial mass Simulates a simple inertial point mass. This kind of object is exploited as
exciter for the resonators, and its only settable attribute is its mass.

Modal resonator Physical model of a set of parallel mass-spring-damper mechanical oscil-
lators. Each oscillator represents a normal mode of resonance of the object, with the
oscillation period, the mass and the damping coefficient of each oscillator corresponding
respectively to the resonance frequency, the gain and the decay time of each mode.

Although object models can behave in different ways and be implemented through different
algorithms, they all must expose one or more pickup points. Each pickup point gives infor-
mation about its displacement and its velocity, and can be used to apply an external force to
the resonator.

Interactor algorithms use the pickup points as interfaces to the resonators, to compute
and apply forces to the contact points, based on their relative displacements and/or velocities.
The available interactors are:

Impact Simulates a non-linear impact, by computing the impact force from the total compres-
sion, namely the relative displacement between the two contact points. The resulting
force is the sum of an elastic component and a dissipative one. The elastic component
is parameterized by the force stiffness (or elasticity) and a non-linear exponent which

7As a final note, the current release of the SDT does not include the class of the Abstract Sounds. This
is because the corresponding timbral families (i.e., the synthesis modules) can be achieved with the repertory
of classic signal-based techniques and modulations. However, this family will be included in the forthcoming
release of the SDT which will account a reorganization according to the timbral families (i.e., the perceptually-
relevant categories of sounds sorted in the three main classes of machines, mechanical interactions, and abstract
sounds.)
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Figure 5: The modular structure implements a feedback communication between interaction
and resonator models.

depends on the local geometry around the contact area. The dissipative component is
parameterized by the force dissipation (or damping weight).

Friction Simulates a non-linear friction, by computing the friction force from the relative
velocity between the two contact points. The resulting force is the sum of four compo-
nents: an elastic term, an internal dissipation term, a viscosity term, and finally the gain
of a pseudo-random function, representing noise related to the surface roughness. More
subtle phenomena, such as pre-sliding behavior (gradual increase of the friction force for
very small displacements), are parameterized by several other quantities: dynamic and
static friction coefficients, break-away coefficient and Stribeck velocity. These phenom-
ena are mostly related to the transients and they are particularly important for a realistic
simulation of friction sounds.

Pickup points also allow to ”listen” to the resonators: The sound output of a simulated
interaction of this kind is usually made of the displacement or the velocity values read from
one or more object pickups.

This particular description of solid interactions is not inherently conservative in terms of
total energy of the system, and can therefore exhibit wildly unstable behaviors under certain
configurations. To avoid this problem, the forces computed by the interactors are limited
by an energy conservation scheme, which guarantees the stability of the algorithms under all
circumstances.

2.7.2 Compound interactions between solids: textures and processes

The basic interactions between solids are used as low-level building blocks and controlled
by higher-level models to create more complex sound textures and events, such as rolling,
scraping, breaking and crumpling sounds.

Rolling A perfectly round object rolling along a perfectly smooth surface should be com-
pletely silent. In the real world, however, irregularities in both the object and the surface induce
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small but sudden changes in the rolling trajectory, which cause a series of micro impacts, as
shown in Figure 6. The amplitude and temporal distribution of these impacts yields a char-
acteristic acoustic signature, often recognizable as a rolling sound, in the everyday listening
experience.

The rolling model accepts an audio sample or a real time noise generator, to represent the
surface profile. The input signal is then filtered by an envelope follower to approximate the
object path along the profile.

Figure 6: Approximation of the rolling trajectory using an envelope follower with instant attack
and linear release. Source: The Sounding Object [RF03].

The output of the rolling algorithm is the normal force exerted on the rolling object. In
addition to the gravity force, whenever a discontinuity occurs in the rolling trajectory the
object experiences an upward lift, with an energy proportional to the depth of the surface
irregularities and to the kinetic energy of the rolling object. If the upward lift is strong enough,
the ball loses contact with the surface and bouncing occurs. The rolling simulation takes this
phenomenon into account, and new impacts are generated only after the gravity force has
counterbalanced the last upward lift applied to the ball.

Scraping The sound of a nail, a stylus, a saw tooth or another point-like object scraping
against an irregular surface can be also represented as a series of micro impacts, although
characterized by a different acoustic signature compared to the rolling sounds. In the SDT
development of the scraping model, the surface profile and the object trajectory are computed
similarly to the rolling, being the output a normal force. Unlike the rolling scenario, the
computed force acts directly on the surface with a downward pressure, instead of an upward
lift.

Bouncing The sound of an object dropped from a given height and repeatedly bouncing on
a surface can also be represented by a series of impacts. The energy, timing and number of
these impact is mostly affected by the initial falling height, the restitution coefficient of the
bounce and the irregularity of the object. The higher the falling height, the more velocity will
be acquired by the object under the constant drag of gravity and therefore the more powerful
and sparsely distributed will be the impacts. High restitution coefficient will yield long and
slowly decaying distributions, whereas low coefficients will cause the object to stop sooner. A
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spherical object will typically show a regular bouncing pattern, with impacts of exponentially
decaying power and delay, whereas an irregular object will yield a more randomly distributed
impact series.

Breaking and crumpling Crumpling and breaking sounds are yet other cases involving a
superposition of impacts. The main difference with respect to rolling and scraping is that the
object is fragmented into facets with different sizes and shapes. Since this type of deformation
largely affects the acoustic properties of an object, it is necessary to continuously change and
update over time the parameters of the resonators involved in the process.

Highly chaotic processes such as breaking a glass or crushing a can are very difficult
to describe in all their physical details. For this reason, a stochastic approach is adopted.
The model is defined as a Bernoulli process with finite energy, where each atomic sound event
consumes a certain fraction of the global energy of the process. Following results in [HS96], this
energy fraction is picked from an exponentially distributed pseudorandom number generator.
The remaining energy influences the rate of the Bernoulli process, causing a progressive density
reduction which is one of the main acoustic signatures of crumpling and breaking sounds.

Each atomic event represents a fracture of the original object, which splits the whole solid
into smaller pieces. The size of each fragment is also determined by a stochastic algorithm and
influenced by the remaining energy of the process. Smaller fragments are generated towards
the end of the process, as one would expect in a real world situation. Energy value and
excited fragment size represent the outputs of the crumpling model. In addition, to provide
an effective breaking impression, a short noise impulse can be added at the beginning of the
process, as proposed in [WV84].

2.7.3 Bubbles and liquid sounds

The occurrence of acoustic emissions in water or other liquids is due to the gasses, contained
in the liquid mass, which emerge as a population of bubbles. From the physical viewpoint,
a spherical bubble acts as an exponentially decaying sinusoidal oscillator: The gas volume is
excited by the energy involved in the bubble formation process, and then gradually dissipated
through the volume pulsation [Doe05]. The cause of the pulsation is the presence of a com-
pressible region (the bubble) injected in an incompressible fluid, which allows the liquid mass
to oscillate as it would happen in a spring-mass system. A subtle frequency rise is sometimes
added to simulate the characteristic “blooping” sound, generated by bubbles forming close
enough to the surface and caused by a reduced effective liquid mass around the trapped gas.

The bubble model can be used as a building block to generate rich and complex liquid
sound events. A population of bubbles can be easily obtained by means of a sinusoidal
oscillator bank, with each oscillator set to a fixed base frequency. Each voice is modulated in
amplitude and frequency according to the exponential decay and the frequency rise of each
bubble. Amplitude and frequency envelopes are updated according to a stochastic algorithm to
control the behavior of the bubbles population: The bubble generation rate follows a Bernoulli
process, whereas the radius (i.e., the voice number in the oscillator bank) and the depth (i.e.,
the amplitude) for each new bubble are randomly chosen.
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2.7.4 Wind and gas turbulence

Wind and gas turbulence models are suitable to simulate wooshes, wind gusts and howls,
helicopter rotors and so forth [Far10]. A gas flowing in a constant direction usually does not
produce any sound by itself, since the pressure variations are too low to fall into the audible
range. Nevertheless, objects obstructing the air flow are likely to cause turbulence at much
higher frequencies, and produce sounds.

Figure 7: Turbulence noise produced by a gas flow impacting against a rough surface.

One of the possible sources of turbulence is the impact on a large solid surface, shown
in Figure 7. In this case, the turbulence is generated due to the impact of the air molecules
on the surface and to their random change of direction caused by the irregularities of the
surface itself. The resulting sound is modeled through a simple bandpass-filtered white noise
generator, modulated in amplitude according to the velocity of the air flow.

The gas trapped in a cylindrical cavity is simulated by means of a comb filter applied to
the noise signal, namely with a delay line with feedback. Delay time determines the length of
the cavity, while feedback gain determines the amount of energy redirected into the delay line
and hence the amount of resonance of the tube. Tube resonance generates harmonics, whose
presence depends on the velocity of the gas flowing in the cavity, as shown in Figure 8. This
phenomenon is modeled by means of a highly resonant bandpass filter with variable center
frequency.

Figure 8: The first three resonance modes in an open cylindrical tube.

Finally, an air flow hitting a thin object, such as a tree branch or a suspended wire,
produces a repeating pattern of swirling vortices caused by the unsteady separation of the gas
flow around the object, known as Kármán vortex street, and shown in Figure 9. A broadband
noise going through a highly resonant bandpass filter with variable frequency is an acceptable
approximation of its characteristic singing and howling sound.

8https://upload.wikimedia.org/wikipedia/commons/b/b4/Vortex-street-animation.gif
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Figure 9: Kármán vortex street created by a cylindrical object. Source: Wikipedia8.

2.7.5 Supersonic explosions

The explosion model is a novel algorithm, designed and developed from scratch as part of the
SkAT-VG project. Powerful explosions, as well as objects travelling at supersonic speed such
as rifle bullets or cracking whip tails, create shock waves, namely a sudden peak in pressure
followed by a negative expansion tail. In the SDT, this event is modeled with a Friedlander
waveform. As the gas runs back to fill the vacuum left by the explosion, a blast wind is
generated. Turbulence caused by the blast wind is rendered by means of a bandpass filtered
white noise, modulated in amplitude by the Friedlander waveform as the wind intensity loosely
follows the profile of the initial shock wave. Real world explosions are almost never perfectly
impulsive, on the contrary they are subject to various scattering phenomena. A feedback delay
network reverberation unit is used to simulate scattering, adding complexity to the initial blast
wave and improving the realism of the acoustic result [RBDM15].

Figure 10: The Friedlander waveform.

2.7.6 Combustion engines

The SDT combustion engine model represents a novel approach in the physical modeling of
motor sounds. From a mechanical viewpoint, an internal combustion engine converts chemical
energy into kinetic energy by means of a series of controlled explosions. From an acoustic point
of view, this process can be described by means of a set of resonating pipes, excited by the
explosions occurring in the combustion chambers. The tubes resonances are modeled through
digital waveguides, while the engine operation cycle is modeled by means of four distinct
functions representing pistons movement, intake valves operation, exhaust valves operation
and fuel ignition.

As shown in Figure 11, The entire model is composed by an engine block simulation,
including intakes, cylinders and extractors, and by an exhaust system formed by a main exhaust
pipe, a set of resonators acting as a muffler and a terminal exhaust outlet. Intake outputs,
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engine cycle functions and exhaust output are processed as three independent sound emissions,
that can be blended together to simulate different listening points inside and outside the vehicle.
A more detailed description of the synthesis model can be found in [BLDMB15].

Figure 11: Block diagram of the whole combustion engine model.

2.7.7 Electric motors

Electric motors exploit magnetic induction to convert electric energy into mechanical energy.
The simplest arrangement is the DC brushed motor, composed by a stator with magnets of
opposite polarity and a rotor with induction coils. Electric contacts (brushes) power the coils,
inducing a magnetic field. The coils are pushed away from one magnet and pulled toward the
other, thus causing the rotation. A commutator ring is used to invert the polarity of the coils,
allowing the process to repeat.

An ideal electric motor should be perfectly silent. In the practice, rotors are never per-
fectly balanced and generate pitched tones depending on their revolutions per minute (RPM).
Moreover, contacts between the brushes and the commutator ring cause friction noise, as it
does the gearing system which transmits the mechanical energy to the engine load. Finally,
the rotation induces air movement and turbulence noise, sometimes increased by the presence
of a cooling fan attached to the rotor.

The pitched tone of the rotor is obtained through additive synthesis, summing a fixed
number of harmonic partials. Frequency modulation simulates the irregularity of the rotation,
caused by the attached loads. The gear noise is modeled like the rotor noise, with each
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partial frequency multiplied by the gear ratio. Rotor, gears and brushes are usually framed
inside a closed chassis, whose resonance modes are modeled through a comb filter. Finally,
aerodynamic turbulence caused by the spinning parts (rotor, cooling fan) is synthesized with
a bandpass-filtered white noise.

2.7.8 Sound post-processing

The current release of the SDT includes some DSP algorithms which are not sound synthesis
models per se, but can be used as post-processing tools to render specific timbral properties
found in several sound events:

Reverb A “maximally diffusive yet efficient” [Roc97] reverberation algorithm based on a
Feedback Delay Network (FDN). Beyond the conventional simulation of room resonances,
the algorithm is especially used to enhance the texturization of acoustic elements, such as
turbulence and scattering in the explosion synthesis model. For more detailed information
about the textural use of the reverberation unit, please refer to [RBDM15].

Pitch shifter A time domain pitch shifting algorithm, based on [Zoe02], initially used to
simulate doppler effect in the explosion model and successively discarded in later versions of
the synthesizer. It is still available in the Sound Design Toolkit as a post-processing tool to
simulate moving sound sources.

2.7.9 Sound analysis

The Sound Design Toolkit offers some sound analysis tools addressing the issue of temporal
control and behaviour (task 6.2 in the DoW) of sound synthesis. These algorithms extract a
set of audio descriptors, which allow to act in real time on the synthesis parameters through
the use of vocalizations. Although already existing third party libraries and externals could be
used for the purpose, we chose to write our modules from scratch and include them in our
open source release, in line with the founding principles of the Sound Design Toolkit. The
sound analysis tools include:

Envelope follower A simple envelope follower based on a one-pole lowpass filter with dif-
ferent cutoff coefficients for attack and release. Useful to extract control data from signal
amplitude.

Myoelastic activity detector The ratio between a short-term and a long-term amplitude
envelope highlights the low frequency amplitude oscillations typical of most vocal myoelastic
activity.

Pitch estimator A fundamental frequency estimator, based on the Normalized Squared
Difference Function (NSDF) [MW05]. Useful to extract control data from vocal pitch.
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Spectral features Several descriptors related to spectral information are available and in-
clude spectral magnitude, four spectral moments (centroid, spread, skewness, kurtosis), spec-
tral flatness, spectral flux and whitened/rectified spectral flux for onset detection [SP07].

Zero crossing rate detector A zero crossing rate detector, reporting how often an audio
signal changes from positive to negative and vice versa. It is useful as a rough estimation of
noisiness.

Project Title: SkAT-VG
Project Coordinator: Davide Rocchesso (IUAV)

40/59Contract No. FP7-ICT-2013-C FET-618067
www.skatvg.eu



Version 1.0, December 28, 2016

2.8 Timbral families

The concept of timbral family emerged as a specific configuration of one or more sound models
to represent categories of imitated sounds that are unambiguously discriminable in terms of
interaction, temporal and timbral properties (see SkAT-VG Deliverable D.4.4.1).

In the context of the SkAT-VG project, the SDT sound models represent the basic building
blocks to compose the emerging timbral families. Table 1 shows the 26 categories of sounds,
sorted in the three main families of Abstract Sounds, Machines, and Mechanical Interactions,
and the corresponding timbral families with the SDT sound models used. In this respect,
whether compound or not, a timbral family can be described in terms of specific, appropriate
spaces and trajectories of sound synthesis parameters. Figure 12 shows the Max GUI to access
the Machines and Mechanical Interactions synthesizers, and two example patches of timbral
families (whipping and blowing). All the synthesizers are made available as example patches,
with the exception of the Alarm sound category and the class of Abstract sounds which will
be included in the next release of the Sound Design Toolkit, foreseen for December 2016.

Figure 12: (left) The Max GUI of the timbral families of Machines and Mechanical Interactions;
(right) the whipping and the blowing timbral families.

Project Title: SkAT-VG
Project Coordinator: Davide Rocchesso (IUAV)

41/59Contract No. FP7-ICT-2013-C FET-618067
www.skatvg.eu



Version 1.0, December 28, 2016

Abstract sounds
Up
Down
Up/Down Conventional synthesis techniques
Impulse (additive, subtractive, AM, FM...)
Repetition
Stable

Machines
Alarms Conventional synthesis
Buttons and switches Impact
Doors closing Impact
Filing and sawing Scraping
Fridge hums Electric motor
Mixers and blenders Electric motor
Printers fax and xerox Electric motor + rolling + impact
Windshield wipers Electric motor + friction
Vehicles exterior revs up Combustion engine
Vehicles interior accelerating Combustion engine

Mechanical interactions
Blowing Aerodynamic noise
Whipping Aerodynamic noise + explosion
Shooting Explosion
Crumpling Crumpling
Rolling Rolling
Rubbing and scraping Friction + scraping
Hitting and tapping Impact
Dripping and trickling Fluid flow
Filling Fluid flow
Gushing Fluid flow

Table 1: The 26 sound categories that emerged from WP4 experiments are listed on the left
column and coupled with the SDT sound models used to represent them. The sounds are
grouped in the three classes of Abstract Sounds, Machines, and Mechanical Interactions.
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2.9 Temporal control and behavior

To achieve the main goal of WP6, namely imitation-driven sound synthesis, an important
task is the extraction of information from vocal imitations and its use in the temporal control
and behavior of the available synthesis models. During the last years, IRCAM defined and
developed a wide range of descriptor for the analysis of audio signals, fruit of an extensive
work towards a deeper understanding of the concept of timbre [PGS+11]. The sound analysis
tools described in section 2.7.9 partly reimplement and partly extend the family of IRCAM
descriptors as free and open source software.

Perceptual experiments conducted in the last years [LDSA11] and as part of WP4 [LJH+15]
point out that:

• Vocal imitations appear to be characterized by a few, simple acoustic features,

• Not all of those features can be consistently and reliably controlled at the same time.

For these reasons, only a limited amount of audio descriptors is actually useful, and an
even smaller subset is used to control a particular timbral family at any given time. The most
reasonable approach seems to use the voice for a very coarse control of the synthesis models,
and to refine the result by hand through a graphical or physical interface.

According to the perceptual experiments mentioned above, the most salient features in
recognizing and producing vocal imitations include:

• Amplitude variations and temporal patterns,

• Fundamental frequency, closely related to the sensation of pitch,

• Signal zero crossing rate, a rough estimate of the noisiness of a sound,

• Spectral centroid, directly related to the sensation of brightness of a sound,

• Spectral energy distribution, changing for different vowels.

Amplitude variations can be tracked at signal rate by the [sdt.envelope∼] enve-
lope follower, or at control rate by the spectral magnitude descriptor implemented in
[sdt.spectralfeats∼]. A fixed threshold on the first derivative of the signal envelope
is already a simple but effective onset detector, useful for detecting transients and recogniz-
ing discrete temporal patterns in sound events. The spectral features external offers other
two descriptors (regular and whitened/rectified spectral flux) which can also be used as onset
detection functions.

Fundamental frequency is extracted using the [sdt.pitch∼] pitch detector, which dou-
bles as an estimator of signal noisiness thanks to its clarity measure. Noisiness can be also
estimated by [sdt.zerox∼], implementing the zero crossing rate descriptor, or using the
spectral flatness descriptor implemented in the spectral analyzer.

[sdt.spectralfeats∼] is finally used to extract spectral centroid, namely the first sta-
tistical moment of the spectrum. Second, third and fourth statistical moments are also com-
puted, as they are other potentially useful features: Spectral spread (variance around the
centroid) is an estimate of the signal bandwidth, while spectral skewness and kurtosis describe
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the shape of the energy distribution and can be used to roughly discriminate vowel sounds
without performing formant analysis.

Analysis externals take an audio signal as input and return the audio descriptors as output.
For each timbral family, a small subset of these descriptors is scaled, combined and assigned
by an ad-hoc mapping to vocally control the sound synthesis process. Although very different
in their definition and nature, some of the implemented descriptors represent similar features
of the input signal and their domains overlap significantly. Despite their apparent equivalence,
they all have been included in the Sound Design Toolkit, because some implementations are
better fit than others depending on the kind of vocal imitation produced and on the timbral
family that needs to be controlled.
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3 SkAT-Studio

SkAT Studio is a prototype demonstration framework developed by Genesis, designed to facil-
itate the integration with other partners’ technologies.

3.1 Application workflow

SkAT Studio strives to provide a practical implementation of the main SkAT-VG workflow, as
described in the DoW:

Selection: The user produces a vocal imitation of the desired sound. SkAT Studio classifies
the imitation into a sound category, returning the corresponding timbral family (a col-
lection of properly configured synthesizers) and control layer through the use of voice
and/or gesture.

Play: The user controls the synthesizers in real time with vocalization and gesture, transform-
ing her vocal sketches in prototype sounds.

The selection step accepts a sound signal as input, and outputs a configuration which
defines the behavior of the play step. A SkAT Studio configuration is composed of the five
following elements:

Input: Acquisition of voice and gesture.

Analysis: Extraction of meaningful features and descriptors from the input.

Mapping: Transformation of the analysis features into synthesis parameters by further elab-
oration, rescaling and/or combination.

Synthesis: Production of sound. This can be either purely procedural sound synthesis or
post-processing of an existing sound (e.g. pitch shifting or time stretching).

Output: Playback or recording of the final sound.

At the time of writing, only the play step is implemented. The selection step will be
developed during the next year of the project, integrating future results and contributions
coming from the work of IRCAM in WP5.

Figure 13: The SkAT-Studio workflow.
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3.2 Downloading and installing

3.2.1 System requirements

SkAT Studio runs on Windows PCs with Max 6.1 or above. You can download and install
Max from the official Cycling ’74 website: http://www.cycling74.com

3.2.2 Installation procedure

The software can be downloaded as a compressed archive on GitHub, at the following address:

https://github.com/SkAT-VG/SkATStudio/releases/tag/V1.0

After unpacking the archive in the Packages folder of your Max installation, double click
on the included file libraries/FTM.2.5.0.BETA.23.exe and install the FTM&Co library.

To run SkAT Studio open the main patch, named SkatStudio v1.0.maxpat, which is
reachable from the Extras menu.
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3.3 Software overview

The framework is entirely developed in Max, and it is composed by a main GUI which can
host and link together a collection of loadable modules, each one taking care of a specific
operation in the global process. Several modules can be loaded simultaneously, and signal
and/or control data can be routed at will among different modules.

Figure 14: The SkAT-Studio main window.

3.3.1 Modules

Each module is realized as a Max patch and must adhere to a specific template. The SkAT
Studio module template provides a common interface for back-end communication with the
other parts of the framework and front-end integration into the main GUI. To comply with the
template, modules must graphically fit a given area, and provide the following information:
(highlighted in orange in figure 15):

• Name of the module,

• Number of inputs and outputs,

• Input and output labels,

• Documentation (input/output data types, author, description of the underlying algo-
rithms and so on).

A wide variety of modules is already available in the SkAT Studio framework, offering
the basic building blocks for the composition of complex configurations. Future integration
of new features is going to be an easy task, thanks to the capabilities of the Max patching
environment and to the simple yet versatile module template.
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Figure 15: The SkAT-Studio module template.

3.3.2 Data routing: patchbays and groups

Data can be routed from any inputs to any outputs of each module. The communication is
done using routing matrices called patchbays. A patchbay presents itself as a double entry
table, as displayed in figure 16, with all the module outputs listed on the top row and all the
module inputs listed on the left column. A toggle matrix allows to associate each output to
one or more inputs, simply activating the appropriate toggles in the double entry table. To
simplify the data routing process, modules are divided in groups reflecting the five stages of
the Play process. Data is first routed among single modules inside the group, and then among
different groups inside the main framework.

Figure 16: On the left, example of a patchbay for the analysis group. On the right, the global
SkAT Studio patchbay.

3.3.3 Building a configuration

The procedure we describe thereafter is systematically illustrated with references to labels
positioned on Figure 17.

To build a configuration, the successive steps are:
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1. In each group, choose the number of modules to instantiate.

2. This operation creates as many tabs as required by the modules to be loaded.

3. In each tab, load the desired module. This may be done by drag and drop (from the
Windows explorer) or by choosing a module in the list.

4. For each group, define the number of inputs and outputs that should be exposed to the
other groups. By default, the number of inputs/outputs of a group is the total number
of inputs/outputs of all the modules in the group.

5. Limiting this number allows to reduce the amount of data to route between groups, and
therefore the size of the corresponding patchbays.

6. Click on connect to open the group patchbay and route data in each group.

7. Click on connect (top of the screen) to open the global patchbay and route data between
groups.

Figure 17: Building a SkAT Studio configuration.

3.3.4 Saving a configuration

Click on the Save button (8) to save a configuration. A dialog window allows choosing the
saving folder and the name of the saving file. Configuration are saved as .json files.
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3.3.5 Loading a configuration

Click on the Load button (9), then choose the .json file containing the desired configuration.
The progress bar (10) shows the loading progress and prints Done when loading is finished.

3.4 Available modules

3.4.1 Input

Microphone Acquires vocal signals as real time control data.

Player Plays back sound files, useful for offline vocal control.

OSC Communications Acquires OSC data, such as sensor outputs in objects manipulated
with hands, useful for live gestural control.

Figure 18: From left to right: The Microphone, Player and OSC communications input
modules.

3.4.2 Analysis

Vocal Activity Detection Detects vocal activity in an audio signal, by means of calculations
on signal energy in a specified temporal window.

Pitch detection Detects the fundamental frequency of a signal. Based on the YIN algo-
rithm [dK02].

Attack/Decay analysis Detects attack, sustain, release and decay times of musical notes
in the input signal. This module is particularly useful for music and singing voice.

Formant detection Detects the center frequencies of voice formants.

Partials frequency analysis Detects the partials of an input signal, namely its fundamental
frequency and multiples.

Spectral peak extraction Extracts spectral peaks from the input signal.
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Figure 19: From left to right: The Vocal Activity Detection, Pitch detection and Attack/Decay
analysis analysis modules.

Figure 20: From left to right: The Formant detection, Partials freq analysis and Spectral peak
extraction analysis modules.

Control OSC Used with the Control app9 on an android or IOS device, it detects accelerom-
eter data and gyroscope data or XY coordinates on the multitouch screen. In this last case,
the coordinates can be offered in Cartesian or Polar form.

9http://charlie-roberts.com/Control/
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Wiimote OSC This module has to be linked to the OSC input module of SkatStudio. Used
with a Wiimote, it detects accelerometer data.

Shaking acceleration Detects acceleration peaks. A threshold can be defined to avoid
detection of small fluctuations.

Figure 21: From left to right: The Control OSC (sensors and touchscreen), Wiimote OSC
and Shaking acceleration analysis modules.

3.4.3 Mapping

Mapping Transforms data in three possible ways: graphical definition of a piecewise linear
function (top), definition of a linear function by its coefficients (middle), definition of a custom
function (bottom).

Scaling Allows to intuitively define of a linear mapping function, providing two examples of
input data and their corresponding desired output values.

3.4.4 Synthesis

GeneCARS Synthesizes engine sounds, using the GeneCARS technology.

IUAV Engine Engine sound synthesizer, based on the sdt.motor∼ sound model available in
the SDT.

Bell Synthesis of bell-like sounds, based on the sdt.impact∼ sound model, available in the
SDT.

Impact Synthesis of impact sounds, using the Sound Design Toolkit models for basic me-
chanical interactions between solids.
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Figure 22: From left to right: The Mapping and Scaling mapping modules.

Figure 23: From left to right: The GeneCARS and IUAV Engine synthesis modules.

Water Synthesis of water sounds, using the Sound Design Toolkit fluid flow model.

Remix Four channel audio mixer.

VST Shaker This module is the integration of an external VST plugin, to demonstrate the
feasibility of such integration.
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Figure 24: From left to right: The Bell, Impact and Water synthesis modules.

Figure 25: From left to right: The Remix and Shaker VST synthesis modules.

Parametric EQ Parametric equalizer.

Pitch shifter/Time stretcher Applies a pitch shift and/or a time stretch to a given sound.

Doppler effect Applies a doppler effect and a left/right spatialisation to a sound, to simulate
moving sound sources.
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Figure 26: From left to right: The Parametric EQ, Pitch shifter/Time stretcher and Doppler
effect synthesis modules.

3.4.5 Output

Audio output Plays back the produced sounds on the default audio output device (loud-
speakers, headphones, . . . ).

Recorder This module allows to record the produced sounds to an audio file.

Figure 27: From left to right: The Audio output and Recorder output modules.

3.5 Configuration examples

The configuration examples described in the following paragraphs are available in the presets

folder of the SkAT Studio package.
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3.5.1 Genecars

In this configuration, the user controls the RPM of a car engine with her voice. The imple-
mentation in SkAT Studio is displayed in figure 28 and is composed of the following modules:

1. Voice is acquired through the microphone and used as a system input.

2. A Vocal Activity Detector coupled with a pitch estimator are then used to analyze the
input signal and extract the fundamental frequency during vocal activity,

3. The pitch of the voice, expressed in Hz, is linearly mapped to the Revolutions Per Minute
(RPM) of the engine,

4. The RPM value is used to control Genesis’ GeneCARS module, which synthesizes the
engine sound,

5. Synthesized sound is routed to the speaker output.

Please note how the GeneCARS configuration workflow reflects the general five-point structure
of the play step of the SkAT Studio framework.

Figure 28: Implementation of the control of a car engine with voice.

3.5.2 Bell

By shaking her smartphone or a Nintendo Wiimote, the user controls a bell sound as if it had
a real bell in her hand. The implementation in SkAT Studio is displayed in figure 29: The
communication between the smartphone (or the Nintendo Wiimote) and SkAT Studio is done
using OSC format, via bluetooth or wifi. OSC data are decoded to get the acceleration, which
is analyzed to look for peaks. When a peak is detected, its value is used as input to control
the strength of the impact on the bell.
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Figure 29: Implementation of the control of a bell sound with gesture.

3.5.3 Remix

By moving her finger on a 2D device (for example a smartphone or a tablet), the user dy-
namically controls the mixing of three sounds: the 2D position directly controls the level of
two sounds, while the third one is implicitly computed to keep constant the overall level. The
implementation in SkAT Studio is displayed in figure 30: the communication between the
smartphone (or the tablet) and SkAT Studio is done using OSC format, via bluetooth or wifi.
The 2D position (between -1 and 1) is directly used as a control for the mixing levels. The
mixed sounds are the separation of the tonal, transient and noisy parts of a diesel engine with
a turbo whistling.

Figure 30: Implementation of the 2D remixing configuration.

Project Title: SkAT-VG
Project Coordinator: Davide Rocchesso (IUAV)

57/59Contract No. FP7-ICT-2013-C FET-618067
www.skatvg.eu



Version 1.0, December 28, 2016

References

[BLDMB15] Stefano Baldan, Hélène Lachambre, Stefano Delle Monache, and Patrick Bous-
sard. Physically informed car engine sound synthesis for virtual and augmented
environments. In Proceedings of the IEEE 2nd VR Workshop on Sonic Interac-
tions for Virtual Environments, Arles, France, 2015.
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