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Abstract This deliverable D.5.5.2 presents the results of
the tasks 5.3 and 5.4 of the WP5 of the SkAT-
VG Project. The task 5.3 “Informed Classifer” relates
to the automatic recognition of vocal imitations start-
ing from the transcription of an audio signal into vo-
cal primitives (VPs). In D.5.5.1, KTH has proposed
a system to automatically transcribe an audio signal
into these VPs. In the first part of the present deliv-
erable D.5.5.2, we study the automatic recognition of
the vocal imitation categories from this transcription.
The task 5.4 “Fusion Classifier” relates to the au-
tomatic recognition of the vocal imitation categories
using the fusion (early or late) of the information pro-
vided by the VPs transcription and the set of audio
features IRCAM has proposed in D.5.5.1.
In the second part, we propose an innovative method
to automatically derive time and frequency “primi-
tives”, named Audio Primitives (APs) from a dataset
of audio recordings. These APs then constitute the
alphabet of a transcription system. To derive these
APs we propose the use of the Shift-Invariant Prob-
abilistic Latent Component Analysis (SI-PLCA). The
activations over time of the VPs then serve as input
for the decoding of a set of hidden Markov models
representing the various vocal/gesture imitation cat-
egories.
In the third part, we present the continuation of the
gesture analysis of the imitation database and the
formalisation of the Gesture Primitives (GPs) initially
presented in D.5.5.1. A new set of features for char-
acterising the different “frequency” behaviours is pro-
posed, based on the application of a Non-negative
Matrix Factorisation (NMF) on the different scalo-
grams (wavelet transform). This feature space is ex-
plored for both, finding automatic gesture primitive
and creating classification systems.

Keyword List: audio, vocal, gesture, imitation, SI-PLCA, NMF,
primitives, classification, recognition, hidden Markov
model, scalogram
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1 Executive summary

The deliverable D.5.5.2 presents the results of the tasks 5.3 and 5.4 of the WP5 of the
SkAT-VG Project.

The task 5.3 “Informed Classifier” relates to the automatic recognition of the imitations
categories starting from the transcription of an audio signal into vocal primitives (VPs). In
D.5.5.1, KTH has proposed a system to automatically transcribe an audio signal into these
VPs. In the present D5.5.2 deliverable, we study the automatic recognition of the vocal
imitation categories from this transcription. For each file, KTH transcription system outputs:
a) the global phonetic transcription, b) the global observation probability and c) the set of
global audio features used by the acoustic model. We use a, b and c as input to a soft-margin
SVM-RBF classifier to recognize the categories (see Section 2.3).

Vocal Vocal primitivesKTH Transcription 
System

Imitation 
CategoryClassifier

D.5.5.1

The task 5.4 “Fusion Classifier” relates to the automatic recognition of the imitations
categories using the fusion (early or late) of the information provided by the VP transcription
and the set of IRCAM audio features proposed in D.5.5.1. We tested the use of a, b and c in
complement to IRCAM audio features to recognize the imitation categories (see Section 2.4).

D.5.5.1

Vocal

Vocal primitivesKTH Transcription 
System

Imitation 
Category

Classifier + 
Fusion

IRCAM-SAS 
Audio Features

The initial goal of task 5.3 was to develop a system to recognize the imitation categories
inspired by speech recognition, i.e. including 1) a language model (a model that represents the
set of possible sequences of phonemes used by people to imitate a given imitation category),
2) an acoustic model (a model that allows to recognize the phonemes over time from their
acoustic occurrences). The idea was then to recognize the categories by decoding a set of
hidden Markov models trained for each imitation category. Unfortunately, it was not possible
to transcribe the vocal/gesture imitation dataset into vocal primitives. It was therefore not
possible to train a language model. Also the system that transcribes an audio file into vocal
primitives only performs at the file level (no transcription over time).

In order to overcome these problems, IRCAM-SAS presents in section 3 an innovative and
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promising methodology that allows to automatically estimate the definition of audio primi-
tives, to automatically get their locations in time and use them in the framework of a lan-
guage/acoustic model in the form of a set of hidden Markov models. In this approach, the
primitives are not manually annotated but are automatically learned using unsupervised learn-
ing algorithm from a dataset of recordings. These primitives are named “audio primitives”
since they do not rely on any vocal production mechanism but only on time and frequency
audio representation. For this task, we propose the use of the Shift-Invariant Probabilistic
Latent Component Analysis (SI-PLCA), the kernels of which are considered as “audio primi-
tives”. SI-PLCA was chosen since it allows to fulfill the two important requirements: additivity
of the primitives (so that a given time-segment can be represented as the superposition of
several primitives, for example a low-frequency harmonic component with super-imposed to it
a high-frequency noise sound) and shift-invariance in time and frequency (the audio signal is
represented by a reduced set of primitives shifted in time and frequencies). Using a small anno-
tated dataset, we show that such automatically derived audio primitives represent acoustically
meaningful cues. We then develop a system that allows recognizing vocal imitations. For this
the activations over time of the vocal primitives are considered as emissions of the hidden
states of a Markov model. The succession of states is specific to each imitation category. We
therefore represent each imitation category by a specific hidden Markov model.

Vocal Dataset SI-PLCA Kernels 
Audio Primitives

Vocal Deconvolution Activations over 
time

?

?

?

Imitation Category

1) Finding automatically Audio Primitives (APs)

2) Using APs decomposition to recognize Imitation Category

"Mixers" HMM

"Fridge" HMM

... HMM

... HMM

?

In section 4 of this deliverable we also present the continuation of the gesture analysis of the
imitation database and the formalisation of the Gesture Primitives (GPs) initially presented in
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D.5.5.1. The different gestural strategies can be associated to frequency components. A new
set of features for characterising gesture strategies is proposed, based on the decomposition of
scalograms obtained with the wavelet transform. The decomposition is derived from a Non-
negative Matrix Factorisation (NMF). Precisely, NMF allows for modeling complex gestural
scalograms as a mixture of prototypical basic shapes, consistent across participants. It allow
for reducing dimensionality by creating a compact and robust component space. As a result, a
gesture primitive can be described by a distribution of the different components. We performed
clustering analysis on the components, K-means and Gaussian Mixture Models, and found that
the K-means better fits our criteria. We also evaluated classification using K-nearest neighbour
and Gaussian Mixture Models.
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2 Informed and Fusion classifiers

2.1 KTH phonetic transcription system outputs

In deliverable D5.5.1, KTH has proposed a system to automatically describe a vocal signal
in terms of vocal primitives (VPs). These VPs represent specific vocal mechanism describing
high-level phonetic content used in (European) languages. KTH has focused on three VPs:
phonation, slow myoelastic vibrations and turbulence. Given an input vocal audio signal, KTH
has proposed a system that allows to detect if one (or several) of the three VPs has been
used to produce the sound. For this, KTH has used supervised learning methods applied to a
dataset annotated into these three VPs. It should be noted that this dataset is different from
the ones developed by IRCAM and which is annotated into vocal/gesture imitation categories.

The goal of IRCAM-SAS in task 5.2 was to develop a classifier into vocal imitations (6
categories for within the abstract family, 10 within the interaction family and 10 within the
machine family) from scratch, i.e. without considering the specificities of the vocal sounds and
the specific mechanisms of of the vocal productions. We therefore named it “blind” classifier.
This has been described in deliverable D5.5.1.

In the opposite, the goal is here (task 5.3) to take advantage of the fine description of the
vocal mechanisms used to produce the vocal sounds. This description is provided thanks to
the KTH system. We therefore name it “informed” classifier in the sens that the classifier is
“informed” by a higher-level description specific to the vocal signal.

Finally, we combine both “blind” and “informed” classifier into a single system which
named “fusion” classifier.

2.2 KTH descriptors definitions

KTH system for Vocal Primitives (VPs) recognition has been thoroughly described in deliver-
able D5.5.1. We do not describe it again but only focus on the exploitation of its outputs to
recognize the vocal imitations categories on the SkAT-VG dataset.

KTH actually proposes three independent binary (presence/non-presence) classifier for each
of the three VPs considered phonation, slow myoelastic vibrations and turbulence.

For a given audio file, the system outputs three different information:

L: Low-level. A large set of descriptors (62) which are used by KTH as observation to predict
the VPs. It should be pointed out that these descriptors are shared by the three classifiers.

S: Scalar. Three scalar values which represent the output of the three trained Partial Least
Square (PLC) models. They can be considered as the likelihood of the three VPs classes.

T: Thresholded. Three boolean values which report about the detection or not of each
of the three vocal primitives: phonation/no-phonation, vibrations/no-vibrations, and
turbulence/no-turbulence. They are obtained by thresholding the previous Scalar values.

In order to develop the “Informed” classifiers, Ircam-SAS considered the three different
kinds of outputs (L,S,T). KTH system was first run on the whole vocal/gesture imitation
dataset. The resulting outputs have been used to train prediction models for each imitation
categories.
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Figure 1: Ensemble of the KTH descriptors (T, S and L) along with the methodology used
by Ircam SAS to build the Informed Classifiers (Sec. 2.3).

In Figure 1, we illustrate how the three outputs of the KTH system has been used to train
the “Informed” classifiers.

2.3 Informed Classifier

Dataset. For each audio file of the vocal/gesture imitation dataset, we have computed the
L, S and T descriptors. For this we have used the full dataset collection, i.e. we consider all
the recordings of all subjects, both using Voice Only and Voice plus Gesture experiments (see
D5.5.1 for details). This results in a collection of about 7300 audio files.

Evaluation scenario. The dataset is divided into three families: abstract, interaction and
machine. Each family is further sub-divided into 6 categories within the abstract family, 10
within the interaction family and 10 within the machine family. The goal is to predict the
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categories independently within each family. A distinct recognition task is therefore performed
for each of the three families. This is performed using 10-fold cross-validation. It should be
noted that we performed a subject-filtering: all imitations from a given subject are either in
the test or in the train set, but never in both. Recognition performances are measured using
the well-established Accuracy, Recall and Precision values. Recall and Precision are given for
each category and averaged over the 10 folds.

Recognition system. Considering that none of the three types of outputs of KTH soft-
ware is providing time-varying information (the information already represents the whole file
duration, the evolution of the signal is already embedded into the descriptors themselves),
it was not possible to test Dynamic Time Warping or Hidden Markov Models classification
strategies as we did in deliverable D5.5.1. We therefore relied on Support Vector Machines
(SVM) classifier.

We first applied a z-norm normalization to the descriptors (T, S or L) before giving them
to the SVM training algorithm.

We used a soft-margin SVM with a RBF kernel. The parameters σ (of the RBF) and C
(wrong classification) of the soft-margin SVM have been tuned using grid-search. For this,
within each of the 10-folds, the training fold is further subdivided into 3 folds for parameter
optimization. The parameters leading to the best average results (mean recall) over the 3
sub-folds is then chosen as the fold parameters. We explored the following parameters grid:

C = {0.00001, 0.001, 0.1, 1, 10, 1000, 100000}
σ = {0.5, 0.8, 1.0, 1.2, 1.5, 2, 5}

This grid has been determined after a first set of early experiments, in which we have found
effective to limit the search for σ around 1.

Results. In Table 1 we report the corresponding recognition results for each the three
families (Abstract, Interaction and Machine) using each of the three descriptor sets (T,S and
L). As one can see, the results obtained with the binary prediction of the vocal primitives
(T) are lower than the ones obtained with the “likelihood” of the vocal primiteves (S) which
itself is lower than the results obtained using the low-level descriptors (L). These results
are disappointing since they somehow show that using the higher-level phonetic information
provided by the vocal primitives (T or S) decrease the results.

We give a set of possible explanations:

1. There is no relationship between vocal primitives and vocal/gesture imitation categories;
which is to say that people may use a large variety of vocal mechanisms to imitate the
same category. Unfortunately, we cannot check this, given that we don’t have the
annotations into vocal primitives of the vocal/gesture imitation dataset. We can only
rely on the estimation by KTH system of the vocal primitives.

2. There is a relationship between vocal primitives and vocal/gesture imitation categories;
but the current KTH system failed to detect the vocal primitives on vocal/gesture
imitation dataset. For the same reason as above we cannot check this assumption.
However one potential limitation of the current system is to provide a single estimation
for the whole file while the audio file may contain a succession over time of various vocal
primitives.
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3. There is a relationship between vocal primitives and vocal/gesture imitation categories
and the current KTH system performs correctly; however the number of vocal primitives
is not large enough to represent all the vocal mechanisms used in the vocal/gesture
imitation dataset. This is possible. From a machine learning point of view, the low
number of dimensions of T and S (only 3) gives a small amount of freedom to find the
most discriminative directions to separate the 6, 10 and 10 categories. The fact that L
has 62 dimensions will therefore favor a larger recognition score.

As a comparison, we also provide in Table 1 the equivalent results obtained using the
GenMorpho descriptors with an SVM classifier, as presented in D5.5.1. While the L descriptors
have been tuned to highlight the vocal primitives, the GenMorpho descriptors have been tuned
to highlight directly the vocal/gesture imitation categories. This seems beneficial.

Family #Categories Descriptors T S L GenMorpho
Accuracy 29.57 46.75 76.66 84.35

Abstract 6 Mean Recall 31.67 48.33 77.47 85.12
Mean Precision 29.03 47.81 78.15 85.47
Accuracy 22.03 41.49 64.31 71.58

Interaction 10 Mean Recall 22.39 41.65 64.41 71.69
Mean Precision 21.79 41.91 65.04 72.39
Accuracy 25.96 38.24 66.84 69.06

Machine 10 Mean Recall 24.67 37.35 65.93 68.15
Mean Precision 17.71 37.84 67.68 69.90

Table 1: Results of 10-folds crossvalidation for the three imitation families using the T, S and
L descriptors.

2.4 Fusion Classifier

The aim of Task 5.4 is to perform the “fusion” between the Blind classifier (Task 5.2) and
the Informed classifier (Task 5.3). Exploiting well-known machine learning approaches, it
is possible to merge the results of different classifiers, applied on the same task, in order
to improve the overall recognition performances. In principle, the fused systems should
compensate for each other weaknesses and provide better results. Since the Blind and
Informed Classifiers are built according to different perspectives, we expect them to carry
complementary information: the fusion should then work better than both classifiers alone.

Two main fusion paradigms exist: early and late-fusion. For a given classification system
we denote by {x}i the input descriptor set, by fi the classification algorithms and by fi({x}i)
the predicted classes for an input {x}i.

The early fusion of two systems i and j consists in merging their input {x}i and {x}j into
a single input. The classification algorithm is therefore the same and is shared for/between
the two inputs: fk({x}i, {x}j). The dimensionality of the new inputs is of course larger.

The late fusion of two systems i and j consists in training a top-classifier based on the
outputs of the individual outputs of bottom-classifiers: fk(fi({x}i), fj({x}j)). To train it,
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the two (or more) bottom-classifiers are first trained independently. The top-level classifier is
trained based on the outputs of the two-bottom classifiers. For this, the two bottom-classifiers
are evaluated over the training (or validation) set. The computed values from each classifier
fi({x}i) and fj({x}j) (affinities, log-likelihoods, etc.) are then concatenated, and used as
descriptors to train the fusion statistical model.

As a reminder, in deliverable D5.5.1 (Blind classifiers) Ircam-SAS has provided two dif-
ferent recognition systems. We choose to use the GenMorpho (GM) descriptors to test the
effectiveness of the fusion schemes. Without giving here details about GenMorpho compu-
tation, we recall that they consist of a vector of 13 values per audio file, with embedded
temporal evolution (no time-series). The recognition results of the GenMorpho descriptors on
the vocal/gesture imitation dataset, recalled from D5.5.1, are reported in the last column of
Table 2 and 3. We point out that the data folding scheme used for those has been applied for
all the results in this Section, so results are directly comparable.

2.4.1 Early fusion

For the early fusion paradigm, we tested the concatenation of the GenMorpho descriptors and,
in turn, T, S or L vocal primitives descriptors. 10-fold cross-validation with subject-filtering
has been applied, and SVM parameters have been tuned by sub-cross-validation according
to the same grid search described in part 2.3. The recognition results for each of the three
families (abstract, interaction and machine) are given in Table 2.

For both Abstract and Interaction families the best results come from the fusion with the
S descriptors. Unfortunately, in both cases the fusion mean recall values are actually lower
than their counterpart from GenMorpho descriptors alone.

For the Machine family, instead, the best mean recall of 69.15% is found by the fusion
between GenMorpho and L descriptors. In this case fusion is effective, because this value is
slightly better than the mean recalls of the two classifiers alone.

Family Descriptors GM+T GM+S GM+L GM alone
Accuracy 82.11 83.68 83.00 84.35

Abstract Mean Recall 82.94 84.41 83.84 85.12
Mean Precision 83.35 84.67 84.20 85.47
Accuracy 70.63 71.43 70.96 71.58

Interaction Mean Recall 70.72 71.60 71.02 71.69
Mean Precision 71.31 72.23 71.35 72.39
Accuracy 66.04 67.61 70.36 69.06

Machine Mean Recall 64.80 66.59 69.15 68.15
Mean Precision 66.45 68.25 70.80 69.90

Table 2: Results of early fusion recognition on the three Families using GenMorpho (GM) and
T, S and L descriptors fused with GenMorpho ones. 10-fold crossvalidation is applied, along
with sub-cross-validation to tune the SVM parameters.
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2.4.2 Late fusion

Given the fact that early fusion has proven effective only when applied to the L descriptors (for
the Machine family), we have decided to apply a late fusion strategy only between GenMorpho
and L descriptors (disregarding T and S). As introduced before, late fusion approach uses a
two-level paradigm:

• first train the bottom classifiers {x}i → fi({x}i) and {x}j → fj({x}j),

• then train the top-level classifier {fi({x}i), fj({x}j)} → fk({fi({x}i), fj({x}j)}).

In principle the three classifiers fi, fj and fk could be totally different, but we have chosen
to rely on SVM in all cases. This means that we need to tune the parameters for the three
SVMs.

The detailed approach is:

1. GenMorpho and L descriptors are computed for the whole dataset.

2. The dataset is folded in F = 10 parts (with subject filtering): 9 folds are used as train
set Df

tr and the remaining one as test Df
te (folds f ∈ [1, F ]).

3. Bottom-classifiers training:

• The two bottom classifiers are trained on Df
tr: one with GenMorpho and the other

with L descriptors:

• Bottom-level classifier optimization (*): For each bottom classifier, the best SVM
parameters are found using sub-fold-cross-validation (dividing Df

tr in three folds
and searching using grid-search the best C and σ parameters).

4. Bottom-classifiers evaluation on training data: the two resulting models are then applied
on Df

tr to collect the output affinities A
{f,j}
tr where j ∈ [1, 2] indicates the two models.

5. Top-level classifier training:

• A{f,1}tr and A
{f,2}
tr are concatenated, and used to train the top-level classifier

• Top-level classifier optimization (**): The best SVM parameters are found using
sub-fold-cross-validation: 3-folds sub-cross-validation is applied to tune the param-
eters C and σ of the Late model.

6. Top-level classifier testing on test-data Df
te: the category recognition is done according

to the maximum late affinity.

7. Points 2. to 6. are repeated for each fold f ∈ [1, 10], and results are averaged.

We report in Tab. 3 the results of the described procedure.

• In column LateFusion(*) we report the results using only the bottom-level classifier
optimization (we did not use the top-level classifier optimization (**).
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Family Subcrossvalidation: LateFusion(*) LateFusion(**) LateFusion(*)+(**) GM alone
Accuracy 80.21 81.24 80.32 84.35

Abstract Mean Recall 80.36 81.58 80.65 85.12
Mean Precision 84.00 84.11 83.59 85.47
Accuracy 63.97 67.86 67.06 71.58

Interaction Mean Recall 63.97 67.90 67.12 71.69
Mean Precision 70.88 68.48 68.02 72.39
Accuracy 59.12 61.90 62.85 69.06

Machine Mean Recall 58.75 60.75 61.76 68.15
Mean Precision 64.26 62.30 62.89 69.90

Table 3: Recognition results of late fusion on the three Families using L and GenMorpho
descriptors. 10-fold crossvalidation is applied, along with subcrossvalidation with various SVM
parameter optimization.

• In column LateFusion(**) we report the results using only the top-level classifier opti-
mization (we did not use the bottom-level classifier optimization (*).

• In column LateFusion(*)+(**): we report the results using both optimization.

Despite our efforts, the mean recalls shown in Tab. 3 are, for all Families, weaker than the
ones obtained using the early fusion and/or GenMorpho (GM) descriptors alone. Arguably,
the affinities provided by the bottom-classifiers are not meaningful if used to train the Late
models.
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3 Automatic estimation of Audio Primitives and recogni-
tion of vocal/gesture imitation using audio primitives

Despite the disappointing results obtained using vocal primitives estimation to recognize the
imitation categories, there was still a strong scientific interest in the SkAT-VG project to have
a higher semantic interpretation of what people use to imitate a given sound category. Are all
people using the same kind of sounds to imitate a printer-fax? Is there a sub-set of possible
sounds to imitate a printer-fax? Does the type of sounds used to imitate a printer-fax depend
more on the subject than on the category?

Rather than manually annotating the whole vocal/gesture imitation test-set into primitives,
we decided (given also the FET nature of the project and the encouragement of the reviewers
to take risks and be innovative) to develop a new approach to automatically derive the set of
primitives that allow describing a given dataset.

We name them “audio primitives” by opposition with the “vocal primitives” developed by
KTH. The audio primitives do not assume any production mechanisms related to the voice.
They only rely on time and frequency audio representation. To find the audio primitives of
a given dataset, we have chosen, among the possible methods for unsupervised learning, the
Shift-Invariant Probabilistic Latent Component Analysis (SI-PLCA).

In order to validate the fact that these audio primitives (automatically found by SI-PLCA)
actually bring a semantic, we have created a small dataset manually annotated into audio
primitives. This small dataset allows to compare manual and automatically estimated primi-
tives.

Given the set of audio primitives, a given sound can be automatically decomposed into
these primitives. The resulting temporal activations can then be considered as emissions of
hidden states belonging to a sequence model specific to each imitation category. We therefore
trained a hidden Markov model for each category. Each state of a model represents the use
of the audio primitives.

We believe this research direction, apart from the fulfillment of the requirements of the
SkAT-VG DOW, can also have an even more far-reaching and innovative content.

In part 3.1, we first present the small dataset manually annotated into audio primitives
that will be used to validate the results obtained by SI-PLCA. We then present in part 3.2,
the SI-PLCA algorithm and its use to obtain audio primitives. We also present a distributed
version of SI-PLCA which allows to partly solve the computational issues of this method. We
finally present in part 3.2.5 how the activation of the audio primitives of a given unknown
signal can be used to perform automatic recognition of imitation categories given a set of
HMMs.

3.1 Ircam dataset of manual annotation into audio primitives

In part 3.2 we will present an unsupervised learning tools (SI-PLCA) that allows finding au-
tomatically audio primitives. In order to assess the performances of it, we have manually
annotated a small test-set into “acoustic cues”. By cues we mean salient behaviors of the
audio signal in its temporal and spectral dimensions: we thus relax the requirement for a
detailed phonetic transcription.
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3.1.1 Acoustic cues definition

We introduce here the dictionary of acoustic cues used for the manual annotation. Every
audio signal is observed by means of its short-term spectrogram. We then mark the salient
regions in the spectrogram (both in time and frequency) by means of the following labels:

Group Label Definition

Content H Harmonic: clear presence of several harmonic lines

N Noise: region has a clear energy content, but without evident
harmonics

R Roughness: similar to noise, but when listened there is some low-
frequency repetitiveness

Resonance F Presence of clearly noticeable formants/resonances

Evolution S Static: the spectral energy distribution remains stable for more
than 0.5s

QS Quasi-static: long-term changes, similar to Static, but with very
slow rise/fall

V Variable: sequence of random short-term variations in spectral
energy

L Slope: short-term, rather fast (less than 2s) and monotonic change
in spectral distribution

P Pulse: very fast phenomena, with short attack and decay (clicks
and similar)

Repetition n A number is present if a certain pattern is clearly repeated; iden-
tical numbers identify identical patterns.

We point out that no difference is made between rising and falling profiles for the L
Evolution. Moreover P Evolution is bound to loudness/energy, while S, QS and L are more
linked to spectral cues.

To ease the automatic parsing of the annotated dataset, we follow some labeling rules.
Labels from the the groups “Resonance”, “Evolution” and “Repetition” can be omitted, but
if used have always to be in order; HFL and HL are both valid labels, while HLF is not. The
labels from the group “Contents” can be combined together, but always respecting the given
order: HNL is a valid label, while NHL is not.

In Fig. 2, we provide an example of manual annotation. The input audio file has been
splitted in several regions according to the aforementioned dictionary and rules.

Of course, the annotation is not completely objective and personal annotator perception can
influence the labeling (especially for the Content). Moreover, we rely on only one annotator.
Despite these weaknesses, we think that the annotated dataset provides a good starting point
to assess SI-PLCA.

3.1.2 Annotated dataset description

Ircam-SAS has annotated 115 audio files chosen from the vocal/gesture imitation dataset.
The data have been chosen from the Voice Only portion of the dataset (disregarding the
Voice plus Gesture part). We have only chosen data from the Interaction and Machine family
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Figure 2: Example of annotations on the SkAT-VG dataset. The following sequence of labels
has been manually annotated over time: HL, RF, HFL, HFL, RF, HFL, HFL, HFL, N, HNL,
HFL, HQS, HS, HL+NP.

because their acoustic content presents a higher variability than those of the Abstract family.
Twelve imitation Categories have been chosen:

Family Categories

Interaction blowing, shooting, crumpling, rubbing, hitting, dripping, filling

Machine filing, fridge, mixers, vehicleext, vehicleint

We have only used the recordings of the first five subjects and for each imitation only used
the last trial (which is supposed to be the best one).

Using this selection, we have selected and manually annotated 115 audio files (total record-
ing duration of 486.38s).

3.1.3 Distribution of the annotated labels

Using this manual annotations, we propose here an analysis of the vocal/gesture imitation
dataset.

We define an annotation label as a specific combination of “acoustic cues”. It should
be noted that, in order to reduce the number of possible combinations between the “acoustic
cues”, we decided to omit the “Resonance” and “Repetition” groups. This reduces the number
of combinations to 18.

We first shows the distribution the annotation labels for a) the whole dataset, b) each
imitation category and c) each subject.

3.1.4 Global distribution.

In Figure 3 we represent the distribution of the annotation labels for the whole dataset. The
figure simply counts the number of occurrences of each unique annotation label over the whole
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dataset.
Some clarifications are needed to explain the strong un-balanceness of the histogram. The

X label appears to be among the most used, and deserves an explanation. The annotated
regions almost never “cover” the entire surface of a spectrogram (see Figure 2), because
low-energy zones are deemed as uninteresting: they do not contain any relevant acoustic cue.
We have thus decided to introduce a fictitious X label, which is automatically added during
the annotation parsing to account for the non-labeled areas of the signal. This hence enables
for the analysis of these regions too. Since for every imitation the X label is automatically
introduced once and only once, in the histogram the corresponding value is 115 (the number
of audio recordings).

The NP label is by far the most used. Noise pulses, in fact, appear rather often in the
imitations (clicks, stops, etc.), and are sometimes produced in groups (a remarkable example
is the dripping category). The labels N, HL and NV are then the most used, followed by R
and NS.
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Figure 3: Bar graph of annotations labels usage over the whole dataset.

3.1.5 Distribution by imitation category.

In Figure 4(left) we show the usage of annotation labels by imitation category. This distribution
has been normalized by the distribution presented in Figure 3, to marginalize the effect of labels
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Figure 4: Left panel: Per-category distribution of annotation labels. Right panel: Count of
imitations per imitation category in the dataset.

usage and enhance each category content: each column is thus a distribution.
Some intuitive associations are confirmed. Fridge imitations are strongly linked to a static

roughness label (RS). The vehicleext category is correlated to several different label, but
all share the slope (L) evolution: the original reference sounds are in effect cars revving up.
Fig. 4(right) show a the balanced categories content of the dataset.

3.1.6 Distribution by subjects.

In Figure 5 we show the usage of annotation labels by subject. In this case the distribution
are sorted by subject. We can see that the majority of RS labels are assigned to imitations
from the first subject, while HRL are mostly used by the fifth subject.
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Figure 5: Left panel: Per-subject distribution of the annotation labels. Right panel: Count of
imitations per subject in the dataset.
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3.2 Automatic derivation of audio primitives using SI-PLCA

As mentioned above, our goal is to develop a method that allows to automatically derive a
set of primitives, which we name “audio primitives” from the analysis of a dataset of audio
recordings. The method used to derive these primitives is the Shift-Invariant Probabilistic
Latent Component Analysis (SI-PLCA). In part 3.2.1 we first motivate the choice of this
method (among the various possible unsupervised learning methods). In part 3.2.2 we then
present this method, apply it to our problem and propose a distributed version of the training
algorithm. In part 3.2.4 we assess the use of the SI-PLCA to derive acoustically meaningful
primitives by comparing these audio primitives to the “acoustic cues” annotated in the previous
part. Finally, in part 3.2.5, we propose a system for recognizing the vocal/gesture imitations
based on the activations over time of the audio primitives. This system relies on modeling
each imitation as an hidden Markov model the states of which emit audio primitives.

3.2.1 Choice of unsupervised learning approach

Our goal is to automatically define audio primitives from a dataset of recordings. By “primi-
tives” we mean the relevant acoustic cues that arise observing a time/frequency representation
of the audio signal.

The interest of this problem lays in the absence of information about the audio content:
the automatic tool is supposed to both define and detect the primitives by itself. Intuitively,
we need to rely on unsupervised learning techniques. There are some peculiarities in the nature
of the audio primitives we are interested in:

• they can appear at the same time and/or frequency location (eg. low-frequency har-
monics superimposed to high-frequency noise);

• they are repeated in shifted time and/or frequency positions.

Among the various unsupervised learning methods, we focused on the ones allowing for ad-
ditivity and shift-invariance of the primitives. It is the case for the Shift-Invariant Probabilistic
Latent Component Analysis (SI-PLCA).

To introduce SI-PLCA, we begin with a well-known mathematical tool for the unsupervised
decomposition of matrices: the Non-negative Matrix Factorization (NMF). NMF is a tool to
factorize a non-negative matrix V into two non-negative terms [5, 4]:

V ≈ WH

The H and W matrices are usually indicated as the bases and the mixture weights: in this
modeling the data vectors (columns of V ) are expressed as linear combinations of the bases
in H mixed by the weights in the columns of W . The NMF approach is algebrical, with no
probabilistic extensions. It has a well-founded background theory and has proven successful in
a number of applications. Despite this, there are cases in which NMF is not easily applicable:
for example, if the input data has more than two dimensions or some constraints are needed
on the shape of the bases H, then it is not straightforward to extend NMF beyond the given
formulation.

NMF can be reformulated in a probabilistic framework as the Probabilistic Latent Com-
ponent Analysis (PLCA) [7]. PLCA is a technique which, among many others, belongs to
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the latent class models (well-known others are Probabilistic Latent Semantic Analysis, Latent
Dirichlet Allocation, etc.). All these have a pair of points in common:

• they are conceived to explain the input data by means of latent classes;

• they are not applied directly to experimental data, but rather on their histograms.

More precisely, to apply PLCA we need to observe one realization of a random multidimensional
variable x. We then compute its empirical distribution function P (x). PLCA explains P (x)
as a mixture of latent distributions, which are made explicit along with their mixing weights.

In the following sections we introduce and use a shift-invariant formulation of the PLCA.

3.2.2 SI-PLCA methods

3.2.2.1. Mathematical background

Shift-Invariant Probabilistic Latent Component Analysis (SI-PLCA) has been introduced [9]
as an extension to the PLCA [7].

Let us begin by focusing on the PLCA model, which can be stated as:

P (x) =
K∑
z=1

P (z)P (x|z) =
K∑
z=1

[
P (z)

N∏
j=1

P (xj|z)

]
(1)

where P (x) is the N -dimensional distribution of the random variable x. The second term of
Eq. 1 expresses clearly that we are describing P (x) as the weighted sum of several P (x|z).
Hence we suppose that the global behavior of P (x) is explained by several other, distinct
distributions P (x|z): the latent classes. These are combined together by means of the latent
variable z, which assumes discrete values in {1, K} and whose distribution P (z) expresses
the mixing weights among the latent classes. The model is fully expanded in the last term of
Eq. 1, where P (x|z) is decomposed into its single-dimensional parts P (xj|z). By the local
independence principle, expressing z renders independent the distributions of x along each of
its dimensions (which otherwise could be dependent).

In order to estimate the latent components P (x|z) and the distribution P (z) it is possible
to apply a standard Expectation-Maximization (EM) procedure. As it is common with this
approach, we begin by estimating the contribution to P (x) for each value assumed by z:

R(x, z) =
P (z)

∏N
j=1 P (xj|z)∑

z′ P (z
′)
∏N

j=1 P (xj|z′)
(2)

We can then estimate the distribution of z by marginalization over the whole space of x:

P (z) =

∫
P (x)R(x, z)dx

Similarly, for each value of z, we can compute the P (xj|z) distributions by marginalizing
over all the other dimensions of x:

P (xj|z) =
∫
· · ·
∫
P (x)R(x, z)dxk, ∀k 6= j, k ∈ {1, N}

P (z)
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Figure 6: Example of PLCA decomposition over a bidimensional random variable (from [9]).

In Fig. 6 there is an example of PLCA. The input random distributions is bidimensional
(lower left panel), and is clearly composed by three distinct “components”. We can then
apply the PLCA iterative procedure, having K = 3 and z ∈ {1, 2, 3}. In the top left panel
we can see that the PLCA estimated the distribution P (z) as equally probable for the first
two values of z, and almost twice as probable for the third value. In fact, looking at the
input, there is one component which is stronger (remark: the association between the input
components and the values of z is aleatory and can change between different runs of the EM
procedure). Coming to the top center and right panels, here we have the estimated P (xj|z)
distributions: they are two because they represent the two dimensions of x, and each of them
is actually made by three distinct curves, because they are conditioned to the values of z. It is
easy to verify that the three input components are approximated by the outer vector product
of P (x1|z) and P (x2|z) for each fixed z. The complete approximation of the input (lower
right panel of Fig. 6) has been found, according to Eq. 1, by weighting the outer products by
P (z).

Let us now introduce the SI-PLCA. Still looking at Fig. 6, it is easy to figure out that, if
one of the three components would have been replicated in a shifted position, this would have
been incorporated into the output estimates:

• setting K = 4 would result in the fourth component being clearly isolated into its own
P (xj|z) distributions;

• letting K = 3 would return still a three term decomposition, which would have been
estimated in order to maximize the approximation of the input (but would probably have
badly approximated all the three-plus-one input components).

What is missing from the current formulation is the so-called shift invariance, that is the
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capability of the procedure to recognize a given component despite having it being moved
around.

It has then been proposed [9] to update the Eq. 1 to allow for shift invariance by using
a convolutive model, which has two distinct parts to decompose the input. We call kernels
(or bases) the “elementary” distributions which are latent in the input, and activations the
distributions of the shifts which, applied to the kernels, reproduce the input P (x, y).

The model becomes:

P (x) =
∑
z

(
P (z)

∫
P (τ |z)P (x− τ |z)dτ

)
(3)

The term P (τ |z)P (x − τ |z) replaces what is P (x|z) in Eq. 1. P (τ |z) represents the K
kernels distributions, dependent on z. A new variable τ has been introduced: it denotes the
dimensions of the kernels. The term P (x−τ |z) describes the activations of the kernels along
the space of the input x.

Without loss of generality, we can fix the input dimensionality to N = 2 and enumerate
the input dimensions as x and y. Eq. 3 is then restated as:

P (x, y) =
∑
z

PZ(z)

∫ ∫
PK(τx, τy|z)PI(x− τx, y − τy|z)dτx dτy (4)

The estimations of PZ(z), PK(τx, τy|z) and PI(x−τx, y−τy|z) can be done with the same
EM approach introduced above, but the formulas have to take into account the shifts. The R
auxiliary variable (Eq. 2) is used to compute the contributions for all the possible values of z
over the space of x. It is now updated to find the contributions due to each possible (τx, τy)
shift over (x, y) space:

R(x, y, τx, τy, z) =
PZ(z)PK(τx, τy|z)PI(x− τx, y − τy|z)∑

z PZ(z)
∫ ∫

PK(τx, τy|z)PI(x− τx, y − τy|z)dτx dτy
(5)

In the maximization step there are now three equations, one for each term to be estimated:

PZ(z) =

∫ ∫ ∫ ∫
P (x, y)R(x, y, τx, τy, z)dx dy dτx dτy (6)

PK(τx, τy|z) =

∫ ∫
P (x, y)R(x, y, τx, τy, z)dx dy

PZ(z)
(7)

PI(τx, τy|z) =

∫ ∫
P (x+ τx, y + τy)R(x+ τx, y + τy, τx, τy, z)dx dy∫ ∫ ∫ ∫

P (x+ τx, y + τy)R(x+ τx, y + τy, τx, τy, z)dx dy dτx dτy
(8)

Eq. 6 is simply the marginalization of P · R product by all the variables except z: all
the contributions of all the variables are thus counted together. To estimate the kernels it
is necessary to marginalize over the space (x, y), to leave only the contributions of z and
of the shifts τx and τy (Eq. 7). For each point in the bidimensional space of the kernels
(plus dimension z), are cumulated the contributions from all the points in (x, y). In the
last equation 8 the aim is opposed: for each point in input space (x, y) we cumulate the
contributions from all the possible shifts of the kernel z.
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Figure 7: Comparison between FFT (left panel) and CQT (right panel) performed on the same
signal (440Hz and then 1500Hz tones with one harmonic). CQT has higher low-frequency
resolution and is shift-invariant also along frequency.

3.2.2.2. Application to audio data

As already introduced, the SI-PLCA works on N -dimensional histograms of random vari-
ables. Let us consider the spectrogram of an audio signal (that is, its frame by frame short-time
Fourier transform): by means of a simple normalization it fits the definition of distribution of
probability, over time and frequency dimensions. We can then associate the spectrogram to
the probability distribution of a bidimensional random variable, therefore enabling the use of
the PLCA.

In the context of SkAT-VG , we are looking for the automatic detection of acoustic prim-
itives, and this motivates our interest into the shift-invariance property of the SI-PLCA. In
order to properly exploit the SI-PLCA characteristics, also the spectral representation of the
input audio signal has to guarantee the shift-invariance. Using well known FFT-based spectro-
gram, the invariance is easily verified over the time dimension: if the same event is repeated
over time, also its spectral representation will be repeated and identical. In the frequency
domain things are less straightforward, and FFT is not suitable. We would like to exploit the
shift-invariance to recognize pitch-shifted events as the same acoustical primitive. The notes
of musical instruments, and every common pitched sound, are characterized by harmonics:
a note with fundamental frequency at f0 Hz is actually the superposition of pure tones at
frequency kf0 Hz, with k ∈ N . Let us suppose to have an acoustic event with only one
harmonic, as the one depicted in Fig. 7 (left panel). At fundamental frequency 440Hz, its
harmonic is at 880Hz. Pitch-shifting the event to 1500Hz, the harmonic moves up to 3000Hz.
Being the frequency scale linear, the spacing between the “spectral lines” in the first and in
the second case are different: the representation is thus not shift-invariant.

In order to exploit the SI-PLCA it is needed a spectral representation which preserves
the time/frequency structure of harmonic events when these are pitch-shifted. Given the
multiplicative nature of the harmonic sounds, a solution to this issue is to use spectral repre-
sentations with logarithmic frequency scale. The Constant-Q Transform (CQT) is a spectral
representation alternative to the FFT: the input audio signal is analyzed by means of a bank
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of filters with constant quality factor Q [1, 10]. The center frequencies fk of the K analysis
filters in the CQT are defined according to a geometrical series, with the formula:

fk = f02
k/b, k ∈ {1, 2, . . . , K} (9)

being f0 the lowest analyzed frequency and b the number of frequency bins per octave (b = 36
in the present document). Since Q is defined as the ratio between center frequency and
bandwidth of a filter, the uniform coverage of the analyzed spectrum is ensured. When applying
the CQT to a pitch-shifted harmonic sound, as in Fig. 7 (right panel), its representations
remains pretty identical, except for the frequency shift.

A CQT spectrogram is thus suitable to be used with the SI-PLCA for acoustical primitives
recognition. Since SI-PLCA works on distributions we normalize the CQT such that all its
values sum to one.

CQT analysis has been carried out between 70 and 5000Hz, using 36 bins per octave. The
toolkit which has been used for the CQT [6] allows the tuning of a parameter γ, to increase
time resolution on lower frequencies. Recalling Eq. 9, the bandwidths Bk of the filters are
found as:

Bk =
fk
Q

+ γ

Following the default settings of the toolkit we set γ = 20, and eventually the ratios
between fk and Bk are actually not constant: this is known as Variable Q Transform (VQT).
For the analysis of the dataset we use VQT: we have verified that the spectrograms remain
suitable for shift-invariant analyses, while the increase in temporal resolution improves the
analysis effectiveness. However, in the following sections we still use the acronym CQT
because it better conveys the key idea.

3.2.2.3. Implementation details

The formulation of SI-PLCA given in Eqs. 5-8 is intended for random variables with con-
tinuous domains (except z which is discrete). We need to apply the SI-PLCA to a CQT
spectrogram, which is discrete in both time and frequency.

Eqs. 5- 8 have thus been reformulated in a way suitable for translation in software. To
clarify the exposition, we define the operator Ix{f(x)} =

∑
x f(x). The SI-PLCA has been

implemented in source code by the following formulas [9]:

R(x, y, τ1, τ2, z) =
P

(n)
Z (z)P

(n)
K (τ1, τ2|z)P (n)

I (x− τ1, y − τ2|z)∑
z′ PZ(z

′)Iτ ′1,τ ′2{PK(τ
′
1, τ
′
2|z)PI(x− τ ′1, y − τ ′2|z)}

(10)

P
(n+1)
Z (z) = Ix,y,τ1,τ2{P (x, y)R(x, y, τ1, τ2, z)} (11)

P
(n+1)
K (τ1, τ2|z) =

Ix,y{P (x, y)R(x, y, τ1, τ2, z)}
P

(n+1)
Z (z)

(12)

P
(n+1)
I (x, y|z) =

Iτ1,τ2{P (x+ τ1, y + τ2)R(x+ τ1, y + τ2, τ1, τ2, z)}
Ix′,y′,τ1,τ2{P (x′ + τ1, y′ + τ2)R(x′ + τ1, y′ + τ2, τ1, τ2, z)}

(13)

In the formulas, n represents the iteration number; we let at most 130 iterations to have the
algorithm converge.
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An initial random guess is used for PZ , PK and PI when n = 1. In particular, all the
three distributions are initialized according to a uniform distribution. PZ and PI(x, y|z) are
filled with equal values, normalized to sum up to one. The kernel distributions PK(τ1, τ2|z)
are instead initialized with the realization of a uniform random variable: the numeric “noise”
of PK is needed to let the algorithm convergence begin.

One of the interesting characteristics of the (SI-)PLCA techniques is the straightforward
way of imposing constraints on the “shapes” of PK and/or PI . One would like to have PK
describing the “dictionary” of the input data (the elementary cues of the histogram), and PI
representing the activations of the kernels: ideally, PI should only contains a certain number
of delayed deltas. In other terms, it is advisable to impose some sparsity constraints on
the estimated distributions. Several proposed strategies [8, 3] are founded on a full-fledged
statistical background (entropic prior). We however applied a different approach, suggested
in [9], following the well-known “simulated annealing” paradigm. At each iteration n the
distributions PK and PI are updated by means of Eqs. 12 and 13 respectively. Right after
each update, the following formulas are applied:

PK(τ1, τ2|z) ← c1 · PK(τ1, τ2|z)α(n), α(n) > 0 (14)

PI(x, y|z) ← c2 · PI(x, y|z)β(n), β(n) > 0 (15)

In Eq. 14 the updated PK is again updated with an exponentiation by α; the value c1 is simply
a normalization to ensure PK still remaining a valid probability distribution. Similarly, Eq. 15
is used to re-update PI using β. The key point lies in the correct choice of α and β values,
which are evolving along the iterations. α(1) is fixed to a value < 1, such as [0.8, 0.9], and
slowly rose to 1, which is reached at the end of the iterations. For PI the β is initially fixed
to 1 and then slowly rose, such to reach about [1.05, 1.1] at the end of the algorithm (or even
before). By applying to PK an exponent with value < 1 we obtain the effect of “flattening”
the distributions: at the begin we are thus keeping the kernels rather uniform, avoiding early
“locally optimal” choices. As suggested by [9], this equals to seek for high entropy in the
kernels: entropy will then be lower on the distributions PI , thus hopefully enforcing sparseness
on these. Eq. 15 operates with identical aim, but conversely since it is applied on PI : the
effect is to enhance peaks in PI , once again resulting in sparseness.

Fig. 8 shows the results of SI-PLCA when applied on a toy problem; two distinct
distributions are repeated over the domain of the problem, by means of shifts along both the
axes. The SI-PLCA figures out the shapes of the two distributions (the kernels) and at the
same time locates them over by the corresponding activations. The mixing probabilities PZ
explain that one of the kernels appears more used than the other.

3.2.2.4 Distributed algorithm

The computational requirements of the SI-PLCA algorithm are rather costly. Eqs. 10-12
have to be computed much times (between 60 and 100 iterations in real-world problems), and
each of them implies several nested loops. As a rule of thumb, the computational cost of the
SI-PLCA depends on the product of: the input sizes, the kernel/shift sizes, the number of
kernels which we are looking for, and the allowed iterations. Despite this, the challenging part
of this computation is due to its memory requirements, which are leaded by the matrix R: its
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Figure 8: Example of SI-PLCA on toy problem. Input distribution (top left), reconstructed
distribution (top right), activations (lower left), kernels (lower center) and mix probabilities
(lower right).
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size depends on the product of the input and kernels sizes, and the number of kernels. More
in detail, given the “deconvolution” operated by the SI-PLCA, we need to zero-pad the input
(both in head and in tail, and in both dimensions) and PI by the size of the kernels/shifts.
Being the sizes of the input X and Y , the shifts Tx and Ty, and K the number of kernels:

• The zero-padded input matrix has size (X + 2 ∗ Tx, Y + 2 ∗ Ty);

• the PI matrix has size (X + Tx, Y + Ty, K);

• the PK matrix has size (Tx, Ty, K);

• the PZ vector has size K;

• the R matrix has size (X + 2 ∗ Tx, Y + 2 ∗ Ty, Tx, Ty, K).

We have applied the SI-PLCA on our annotated dataset (Sec. 3.1.2). To do this we
extract the CQT from each imitation, and then we stack the CQTs along their time dimension
(more details in Sec. 3.2.3). The resulting input CQT/histogram of the SI-PLCA has size
(X, Y ) = (111, 34037). In one of our biggest analysis, we sought for K = 8 kernels of size
(Tx, Ty) = (80, 5): this results in a matrix R which has 2.9526× 1010 elements, that is about
219.98GiB (using double precision floating point). Further data storage is needed for the
PI distributions, which in our implementation and for the given example have 52.016 × 106

elements: about 396.85MiB.
In order to fulfill the memory requirements and limiting the computing time, we have de-

veloped a distributed version of the SI-PLCA algorithm. This has the advantage of running
on several machines, thus splitting the needed size of memory and parallelizing the computa-
tions. The key idea underlying the design of the distributed algorithm is that only the kernel
distributions need to be shared among the computing nodes. The input is splitted along
the time dimension, and each node receives a portion of it. Then, each node computes and
updates the PI distributions relative to its portion of the input, while the kernels are updated
jointly by all the nodes.

This is the workflow of the distributed algorithm:

1. CQT of each input recording is computed.

2. The SI-PLCA input CQT is obtained by juxtaposing CQT along time dimension.

3. The whole CQT is splitted by the number of available computing cores.

4. Each node zeros-pads and normalizes its input.

5. Given the sizes of the input, each node initializes its own PI , and receives the same
initial guesses for PK and PZ .

6. Each core computes its own R matrix (Eq. 10).

7. Exploiting R and the input, each core computes PZ and PK (Eqs. 11 and 12).

8. PZ and PK are sent to the master node; here they are averaged (such to converge to
the same set of kernels on all the nodes) and sent back to the nodes.
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9. Each node updates its PI (Eq. 13).

10. Steps 6-9 are repeated until convergence.

11. All the local PI are convolved with PK (for each value of z) and results are sent to the
master node.

12. If needed, the reconstruction of the input is computed inverting the initial split operation
(step 3).

The algorithm has been developed in Matlab, with the core computing routines (each of the
Eqs. 10-13) being translated in C. The distribution among several machines is done using
the Matlab Parallelization Toolbox [2], which is based on the well-known Message Passing
Interface (MPI) paradigm.

Some points in the described algorithm are critical. The step 3 has been implemented
by an Overlap And Add (OLA) approach: the boundary regions of the CQT chunks are
shared among neighbor nodes, and windowing is applied to avoid abrupt discontinuities in the
inputs (this is motivated by the need for a smooth input reconstruction with bi-dimensional
convolution, rather than by the SI-PLCA itself). Steps 11-12 are designed correspondingly:
the OLA windowing over time has to be precisely inverted. To accomplish this, each node
performs the bidimensional convolutions between the local PI(x, y|z) and PK(τx, τy|z) (one
convolution per value of z), then the results are averaged and weighted by PZ . Moreover, the
nodes delete head and tail zero paddings along the time axis, and invert the normalization
applied in step 4. The master node then receives the partial reconstructions and apply OLA
to recover the full input reconstruction (inverting step 3).

In step 10 is determined if the algorithm can be terminated. Being an iterative procedure,
we need a measure of convergence. The most effective one is the direct comparison between
input data and current input reconstruction, by means of a divergence measure. However, input
reconstruction at each iteration can be slow. To evaluate the convergence of the algorithm we
thus rely on a measure of the rate of change of PK between iterations: when PK is (almost)
not evolving, so are doing PI , PZ and the input reconstruction. The algorithm can thus be
stopped.

3.2.3 Application of SI-PLCA to automatically find audio primitives

The distributed algorithm has been exploited to apply the SI-PLCA on the whole dataset
introduced in Sec. 3.1.2. As described in Sec. 3.2.1, our aim is to let SI-PLCA automatically
discover the audio primitives which characterize the dataset. What we are looking for, in
other words, is a link between the manual annotations of the vocal primitives and the kernels.
The kernels found by the SI-PLCA play in fact the role of a “dictionary” of primitives found
automatically by the learning technique.

In order to apply the SI-PLCA to the dataset, all the audio recordings (about 486s) have
been chained together in a longer signal; the CQT transform has then been computed over
it. The resulting spectrogram is a very large matrix. Being the analysis range between 70 and
5000Hz, we have around 6 octaves, hence 6 × 36 = 216 bins. On the time axis, the chosen
toolkit [6] uses about 210 frames per second, thus we have ≈ 102× 103 frames. The actual

Project Title: SkAT-VG
Project Coordinator: Davide Rocchesso (IUAV)

32/54Contract No. FP7-ICT-2013-C FET-618067
http://www.skatvg.eu



Version 1.0, May 13, 2016

time

lo
g 

F
re

qu
en

cy

time

lo
g 

F
re

qu
en

cy

Figure 9: Portion of input CQT: excerpt of about 20s from the dataset (left panel). Recon-
struction of the input excerpt by means of 4 kernels (right panel).

CQT matrix size is (222× 102111). Since this is not tractable by our computers, we resample
the CQT to a lower resolution. Given the bidimensionality of the CQT, we rely on Matlab
internal imresize routine (image resampling with antialiasing) to downsample by a factor of
2 on frequency axis and of 3 on time axis. The final input matrix for the SI-PLCA has size
(111× 34037) (recall that we have already taken these as reference sizes when talking about
the SI-PLCA implementation in Sec. 3.2.2).

In Fig. 9 is shown an example of the SI-PLCA applied on the dataset; for clarity, the figure
shows only a portion (about 20s) of the CQT spectrogram. On the right panel we can see
that the reconstruction is effectively describing the main cues of the signal. In this example we
used only 4 kernels of size (60×6), shown in the right part of Fig. 10. Each kernel has its own
individual contribution to the reconstruction of the input portion (Fig. 10 left panels). First
and third kernels are clearly related to the different harmonic contents of the dataset, with the
first one also used to enhance noisy parts. Second and fourth kernels are less structured, and
are activated mostly in noisy parts.

In Fig. 11 and Fig.12 are shown a part of the results found by SI-PLCA, applied on the
whole dataset, with different parameters. Fig. 11 we found 6 kernels of size (30× 15); while
first (left top) and last (right bottom) are rather unstructured, the remaining are all oriented
toward the harmonic content of the dataset. Interestingly, since the time dimension of the
kernels is bigger than in Fig. 10, it is clear how the second (and the fifth) kernel is well-
suited to describe impulsive content: in fact, its time domain appears lumped. In our CQT
spectrograms harmonics are spaced by 18 bins (36 bins per octave downsampled by 2), so the
kernels size in frequency has to be at least 18 to exploit the shift-invariance. In the light of
this limit we present in Fig. 12 yet another set of kernels: 8 with size (25 × 25). The fourth
kernel correctly catches the harmonic structure, but the extended time axis lets the kernels
show more complex primitives.

Due to the memory requirements of our algorithm we can not compute larger families of
kernels (bigger cardinality and/or bigger kernels). Moreover, increasing the kernels size means
increasing their specificity, such that an even larger number of kernels is required to accurately
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Reconstructions Kernels

Figure 10: Contribution of the kernels to the reconstruction shown in Fig. 9 (left panels). The
corresponding found kernels of size (60 × 6) (right panels). We remark that the frequency
axes in left and right panels are different.

describe the input. A more refined, memory-optimized implementation of our algorithm,
based on the computation of sufficient statistics instead of the matrix R, will allow for the
aforementioned experiments.

3.2.4 Comparison between manually annotated and automatically found by SI-
PLCA audio primitives

The aim of computing the SI-PLCA on the dataset is, as stated in Sec. 3.2.1, to automatically
find the acoustical primitives eventually present in the recordings.
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Figure 11: Six kernels of size (30×15) found by SI-PLCA over the whole dataset. Kernels with
lumped support in time (pulses) or frequency (harmonics) emerge. In text, the numeration is
from the left, top to the right, bottom row by row.

In order to verify the effectiveness of SI-PLCA decomposition on this task, we exploit the
manual annotations that have been introduced in Sec. 3.1.2. In principle, we would like to find
some kind of correspondence between the annotated labels and the kernels. If a kernel k is
often activated to describe regions which have a certain label l, then we conclude that k and
l are somewhat linked: the kernel k successfully describes the acoustical cue of the labeled
primitive.

As a first step in this evaluation, we match the annotated regions of each spectrogram
(Fig. 2) to the reconstruction contributions given by each kernel (Fig. 10, left column). For
each region of each audio file, we compute the per-kernel energy of the reconstruction. We
then normalize by the size of the region, and compute a mean over same-labeled regions. The
result is a matrix RK with a row for each label and a column for each kernel, displaying for
each label the average kernel reconstruction contribution.

Taking as a first experiment the six kernels depicted in Fig. 11, each with size (30×15), we
see in Fig. 13 (left panel) the corresponding matrix RK . At a first glance, the fifth column of
the matrix seems to be sorted (increasing values from top to bottom): in fact, the fifth kernel
has an harmonic structure, and at the bottom of the matrix there are labels with harmonic
content: HL, HS, HQS.
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Figure 12: Eight kernels of size (25× 25) found by SI-PLCA over the whole dataset. Kernels
with lumped support (pulses and harmonics) are found, along with more complex structures.
In text, the numeration is from the left, top to the right, bottom row by row.

To confirm this intuition, we compute the matrix CK of the correlation coefficients between
each pair of rows of RK . Each element of CK in position (i, j) is found as the corresponding
covariance between rows i and j in RK , normalized by the geometrical average of two rows
variances. Furthermore, we sort the rows and columns of CK by computing a dendrogram on
the complete linkage of CK rows. Fig. 13 central and right panels show, respectively, CK and
the dendrogram.

By looking at the figure, grouping between labels with similar content emerges. We can
see the groups R{V,S}, N{S,QS,V,N, }, H{RL,NS,NL,L,S,QS}. In other cases the groups are
less clear (it is the case for R{L, }, or H); we point out that these labels come from a manual
annotation, which is likely to be not always correct and objective.

In Fig. 14 there is the evaluation of another SI-PLCA decomposition: in this case we used
8 kernels of size (25× 25), the same shown in Fig. 12. For the sake of graphic representation,
in this case the correlation coefficients have been exponentiated to let the grouping emerge a
bit more. Even if different from the previous example, and less effective, the clustering among
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Figure 13: Labels correlations by kernel usage on 6 kernels of size (30 × 15). From left to
right: kernel activations for each label, labels correlations computed on the kernel activations,
resulting dendrogram for the labels. Grouping between similar labels confirms that kernels are
associate to audio primitives.

Noise, Roughness and Harmonic primitives is recognizable (especially from the dendrogram).

3.2.5 Recognition of imitation categories using automatically found audio primi-
tives

In previous Sec. 3.2.4 we established a correlation between the kernels/bases found by SI-
PLCA decompositions and the acoustical primitives which have been manually annotated on
the dataset. Recalling one of the aims of our work (Sec. 1), we would like to test if the
kernels can be used to train temporal models of the imitations. The interest in this approach
is twofold:

• support the effectiveness of SI-PLCA in finding meaningful acoustic bases, without man-
ual intervention;

• assess a recognition by means of automatically designed audio features.

To test the automatic classification we proceed in the following way. We begin by comput-
ing the SI-PLCA decomposition of the full dataset using K kernels, shared among the whole
dataset. For each of the N = 115 audio files we then find K reconstructions Sn,k, due to
the individual kernels: these are the spectrograms obtained by convolving each kernel k with
its corresponding activations for the given input recording n. An example of these per-kernel
contributions has already been discussed (Fig. 10, left panels).

We now need to convert the reconstructions into descriptors suitable for a statistical mod-
eling. To this aim, each of the Sn,k spectrograms is summed over its (log)frequency bins: this
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Figure 14: Labels correlations by kernel usage on 8 kernels of size (25 × 25). From left to
right: kernel activations for each label, labels exponentiated correlations computed on the
kernel activations, resulting dendrogram for the labels.

results in a vector dn,k(t) which evolves only along the time dimension. In this way the values
of dn,k(t) are proportional to the energy of the k-th reconstruction at each time t.

For each input audio file n we end up with K vectors dn,k(t): these are then stacked
together in a matrix Dn(k, t) and normalized such to have, for each time frame, values in
the range [0, 1]. The matrices Dn (one per audio file) are then used as descriptors for the
classification.

To carry out the recognition we need to model the temporal evolution of each descriptor,
hence we chose to use hidden Markov models (HMM). To model each category we train an
HMM with s hidden states (which has to be enough even for repetitive categories). The
emission probability of each state is modeled by a gaussian mixture model (GMM) with g
gaussians, which has as many dimensions as the descriptors (that is, the number of SI-PLCA
kernels).

Given the reduced amount of examples in the dataset (115), we use only three folds for the
crossvalidation of the results (filtered by subject). In Tab. 4 are shown the figures obtained
by the automatic recognition with the aforementioned method. The results refer to the two
kernel configurations which have been previously discussed in Sec. 3.2.3: 6 kernels of size
(30 × 15) and 8 kernels of size (25 × 25). The shown figures have been obtained by tuning
the HMM parameters. For the configuration with 6 kernels, we set s = 30, g = 1 and the
underlying GMMs use a diagonal covariance matrix. With the 8 kernels configuration, we set
s = 35, g = 1 and full covariance matrix.

The found results are compared with a baseline system. It is exactly the same already
presented in Deliverable D5.5.1 (Sec. 2.7), based on DTW alignment of time series; the
classification is done by a k-Nearest Neighbor (k-NN) algorithm. Despite the baseline system
is performing better than the proposed method based on SI-PLCA, we can confirm that the
latter is working as expected.
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In Fig. 15 is shown an example of HMM decoding of one imitation; in the image we use
the 6 kernels configuration (please refer to Fig. 11 for the kernels contents). In the topmost
panel we see that the input is made by an alternance of noisy and harmonic content. In the
harmonic parts, the decoded state is the number 9 and, looking at the bottom panel, this
state has a strong emphasis on kernel number 5 (Fig. 11). The fifth kernel is in fact the most
suitable to describe harmonic contents. Similarly, noisy parts are decoded by the state number
8: this one is mostly associated to kernel number 6, that is a “noisy” one. The last part of
the input is mostly decoded as state number 2, which is a mixture of kernels 4 and, to a lesser
extent, 2 and 5: the harmonic content is thus confirmed.

Given the recognition results and the example of decoding, we can conclude that the
computed descriptors are correctly summarizing the content of the imitations. In other words,
the proposed unsupervised learning procedure successfully finds a meaningful set of acoustical
primitives: the aforementioned kernels.

Decompositions: 6 ker. (30× 15) 8 ker. (25× 25) DTW baseline
Categories Rec. Prec. Rec. Prec. Rec. Prec.
blowing 41.67 51.85 41.67 83.33 66.67 77.78
vehicleext 11.11 11.11 0.00 0.00 22.22 66.67
vehicleint 8.33 33.33 25.00 22.22 83.33 41.67
rubbing 100.00 48.15 91.67 59.17 91.67 69.44
filing 52.78 40.00 61.11 50.00 0.00 0.00
dripping 41.67 66.67 36.11 38.89 55.56 72.22
filling 25.00 50.00 75.00 83.33 83.33 48.15
mixers 8.33 33.33 16.67 33.33 83.33 72.22
fridge 58.33 88.89 66.67 66.67 16.67 16.67
crumpling 83.33 74.60 50.00 47.22 83.33 69.84
shooting 100.00 82.22 100.00 77.78 91.67 93.33
hitting 50.00 21.67 33.33 15.87 50.00 64.44
Mean val. 48.38 50.15 49.77 48.15 60.65 57.70
Accuracy 49.55 50.77 61.01

Table 4: Automatic recognition results obtained using descriptors found by SI-PLCA decom-
position. Two configurations and a baseline system are compared. See text for details.
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Figure 15: Example of HMM decoding. Reconstructed CQT by SI-PLCA kernels (topmost
panel), decoding of input imitation by the HMM, HMM states centroids for the depicted
decoding.
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4 Gestures Recognition

We describe here an extension of the gesture analysis presented in D5.5.1. The dataset
is composed of recorded gestures performed concurrently to a vocal imitation. We found
from qualitative observations that different gestural strategies can be associated to frequency
components of the movement, which seems related to metaphoric representation of sound
characteristics. Therefore, we proposed in D5.5.1 to use a continuous wavelet transform which
allows to characterize typical oscillatory movements (Low frequency range from 0.2–0.5Hz to
50Hz, at framerates about 100 to 500Hz)1. Wavelet transform [16] provides a multi-resolution
solution that derives a high localization both in time and frequency.

We focused here on two main tasks:

• The development of a classification system for identifying primitives (created manually
or automatically). This implies deriving gesture-level descriptors.

• A clustering system for defining automatic primitives that group similar gestures in the
dataset.

4.1 Database

For computing the features we use the database created in the early stage of the project.
After filtering (removing errors, e.g. participants that did not follow instructions, etc.) 1576
gestures were kept from 35 different participants.

The database is manually segmented and annotated according to the taxonomy presented
in D5.5.1. and recalled below. The segmentation allows for isolating active regions, where the
actual gesture occurred, and for removing parts not directly linked to the vocalization (such
as the movement performed to reach the mouse after the gesture) 2.

Manual labeling of primitives Six different gesture primitives where proposed from quali-
tative observation. They were defined defined by their frequency components:

• Steady: gestures that practically do not change during time. It ranges from purely
steady gesture to really slow evolution.

• Smooth: fluid and gradual movements

• Dynamic: abrupt, energetic and rapid actions.

• Impulse: single and sudden excitations.

• Periodic: encloses all motions that have a periodicity in time.

• Shaky: gestures that involves hand shaking.

The dataset has been annotated by one annotator, but we plan to complete this annotation
task with a larger numbers of annotators.

1as described in D5.5.1, such frequency ranges are not well resolved using fixed resolution analysis transforms
such as FFT

2participants had to click a mouse for ending the experiment which introduces a constant artifact in all the
recordings
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Dynamic Impulse Periodic Shaky Smooth Steady

301 244 340 103 308 280

Table 5: Gestures distributions according to manual labeling

4.2 Features extraction.

The first step is to obtain a set of gesture features that characterize the different ‘frequency’
behaviors, so that gesture primitives can be properly described. These descriptors are then
used for both the clustering system that defines the automatic primitives and the classification
step that labels gestures with respect to primitives (manual or automatic).

4.2.1 Sensors.

Gestures are tracked with inertial measurement units with 3D accelerometer and 3-axis gyro-
scope (Modular Musical Objects (MO)[14]). Each participant has two, one per wrist.

4.2.2 Wavelet.

As described in details in D5.5.1, the frequency analysis is carried out with the wavelet trans-
form. The offline mode is used. Each accelerometer axis is analyzed independently so that
the final gesture scalogram is the weighted sum of the scalograms on each axis as shown in
Figure 16.

The transformation is calculated using as parameters: base wavelet = Morlet, samplerate
= 200., frequency range = 0.2Hz–50Hz, omega0 = 5.0, bands per octave = 8, delay ratio =
1.5. As a result, 64 different frequency scales are computed.

acceleration data scalograms

X

Y

Z

CWT

CWT

CWT

+
scalogram (fused)

Multi-Target 
Tracking

Ridges

Ridge Amplitude

Ridge Frequency + Width

}
WFT

WFT

WFT

Figure 16: Overview of the wavelet analysis process.

4.2.3 Nonnegatice Matrix Factorization (NMF).

In analyzing the different scalograms, we found that gestures within the same category seem to
be characterized by similar combinations of basic ‘shapes’ defined time-scale space. In order to
confirm this hypothesis, and thus quantitatively characterize such shapes, we proposed to use
Non-negative matrix factorization (NMF). In this technique a non-negative matrix is described
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as a product of two also non-negative matrices:

Vf,t ≈ (W ×H)f,t =
k∑
i=1

Wf,kHk,t. (16)

where k is the number of basis components wanted to be found, in our case k = 25 .
V ∈ Rf×t is the original non-negative data, W ∈ Rf×k the basis vector decomposition and
H ∈ Rk×t the weight matrix. Each column of V represents a F-dimensional data sample and
each row a data feature. In W, each column is referred to as a basis vector. Rows of H stand
for the gain of corresponding basis vector. k is chosen so that (f + t) × k < (f × t). The
product W ×H presents a compressed form of the original data V.

In our context, NMF can provide the basic scalogram shapes of the dataset. These ba-
sic shapes can be then combined to describe the full scalogram associated to each gesture
primitive.

Preprocessing. Following the methodology presented at [15] the scalgoram is treated as
an image. While the amplitude of each scalogram is normalized between 0 to 2553 (float
values), time is compressed or expanded to a fix resolution (500). This means for examples
that two gestures with different length and amplitude ranges are transformed into a 500 length
scalogram with amplitude values that range from 0 to 255. Therefore, total time and amplitude
information of a given gesture are lost. We will describe in section 4.2.4 how we will recover
such information for clustering and classification.

The V matrix. This matrix is the result of the concatenation of each gesture in the dataset
after flattening its information4. This decomposition and concatenation permits the NMF
technique to find coherent scalogram motifs in different locations and with complex forms.

Basic components. W and H are calculated resolving the equation:

min
W,H

f(W,H) ≡ 1

2

n∑
i=1

m∑
j=1

(Vi,j − (WH)i,j)
2

subject to Wi,a ≥ 0, Hb,j ≥ 0, ∀i, a, b, j.
(17)

There are several approaches to solve (17). We choose the ‘Alternating Nonnegative Least
Squares Matrix Factorization Using Projected Gradient or LSNMF’ [11]. It converges fast and
returns small approximation errors in our case. LSNMF solves bound constrained subproblems
using the projected gradient method.

3as an analogy with images.
4the original size of a scalgoram matrix after preprocessing, is 64 scale bands × 500. Flattening is the

process of transforming this matrix into a vector of 32000 length. This process is performed reading the
information from left to right and top to bottom.
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Figure 17: V matrix: Scalogram flattened and concatenated. Top: Dynamic, Impulse, Peri-
odic. Bottom: Shaky, Smooth, Steady.

New gestures. Each gesture scalogram (new or already known) is described as a linear
combination of the k basis vectors:

argmin
x

= ‖Ax− b‖2 for x >= 0 (18)

where x is the weight of each component to be calculated, A the vector of components W
and b the original scalogram. Only additive combinations (negative values are not permitted)
are allowed. Any given scalogram does not have to use all the available components.

4.2.4 Complementary features.

Two other descriptors are added to recover from the information in the normalization pro-
cess, such as time (duration in seconds or samples) or energy (total energy of the original
scalogram)5.

4.2.5 Normalization.

We found that the values of each descriptor follow a exponential distribution. For this reason
we applied ln(x+1) transformation. Finally, the dataset is standardized centering and scaling
each feature independently (zero mean and unit variance distribution).

5Other features could be also includes such as the one derived from the multiple-mode frequency tracking
presented in D.5.5.
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Figure 18: The 25 basic components of our database (after reshaping them). Each one
represents a basis shape spatially localized (time and amplitude) in our gesture scalogram
collection. They can be seen as a collection of descriptors.

Figure 19: The database described as feature values. Rows represent features and columns
represent gestures. Top: Dynamic, Impulse, Periodic. Bottom: Shaky, Smooth, Steady.
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4.2.6 Discussion.

The use of the NMF decomposition has been successful for modeling complex scalogram
as a mixture of prototypical basic shapes, consistent across participants. It provides thus
a compact and reduced representation of the gesture scalogram. In the following sections,
we will show how clustering can be operated using these components and the recognition of
gesture primitives.

4.3 Clustering

In order to discover significant groups of gestures, the 27 dimensions6 feature space previously
described is clustered. This is achieved running a K-Means algorithm [12] on all gestures in
the dataset.

We also evaluated clustering using GMMs, where each Gaussian distribution corresponds
to each class 7. We found that this method was less effective and less consistent compared to
K-Means. Hence, we are not presenting these results.

Finding an appropriate number of cluster that optimally partitions the data set is critical.
The use of prior knowledge on the context can allow one to set a number of clusters. In
our case, we set the number of cluster to six, to compare the automatic clustering to the six
primitives defined manually.

4.3.1 Clustering evaluation

The automatic gesture primitives found are analyzed with respect to both, quantitative and
qualitative criteria.

Qualitative: The visualization of the different discovered clusters allow to evaluate quali-
tatively the validity of the results. The gestures space was reduced into a 3D space using
Kernel8 Principal component analysis (KPCA). With this technique the 48% of the variance
of the original space remains. In this space we can manually evaluate the distribution of the
different clusters.

Clusters cover different areas of our feature space. Analyzing the distribution of points
shows that there is some overlap in the border of the clusters.

Clusters can be also analyzed according to the distribution of manual primitives, as pre-
sented in Figure 21. It is shown that cluster number one is the combination of dynamic and
impulse gestures, number two includes mostly steady and smooth gestures, three a different
type of impulse, four is a mix between periodic and dynamic, five periodic and shaky and six
a combination of smooth and dynamic. These results are consistent with the problems found
during the annotations process where the threshold between some labels is ambiguous.

The center of each cluster can be described as a scalogram, using the values of each
of their NMF components as presented in Table 6 and Figure 22. These scalograms give

6the 25 basic vectors of the NMF + global time and energy.
7several configurations were used: adding extra Gaussian for modeling outliers and different covariance

matrix.
8kernel = ‘sigmoid’
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Figure 20: Dataset distribution with respect to the automatic primitives. Space has been
reduce to three dimensions using PCA. The three figures corresponds to three different views
of the same 3D space built from the first 3 principal components

significant information about the different clusters in the frequency domain. For instance, the
two clusters that comprise impulse gestures respond to different frequency areas.

0 1 2 3 4 5

Time (s) 0.86 5.87 0.67 4.70 4.09 2.93
Energy 1.86× 109 1.18× 109 1.00× 109 8.33× 109 6.01× 109 1.73× 109

Table 6: Time and energy values for cluster centers

The final part of the quantitative analysis consists on retrieving the 10-closest gesture to
the centers. With the visualization of these videos, we ascertain that results are consistent.
This opens interesting perspectives for future psycho-acoustic evaluations where participants
will compare different primitives and evaluate the coherence of each group.

Quantitative: Analysis of different standard scores that measure the consistency of the clus-
tering process. Two main techniques: supervised that rely on a ground-truth and unsupervised
which studies the shape and characteristics of the clusters themselves.

Supervised methods: They allow for comparing the similarity between two label sets. In
our case, they can be used to compare the automatic clustering with manual primitive labeling.
The results of the principal measurements can be found in Table 7. The main issue of such
an evaluation is the possible inconsistencies in the manual annotations.
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Figure 21: Cluster distribution

Figure 22: Centers of each cluster represented as scalograms reconstructed from the NMF
descriptors. Top: classes 0, 1 and 2 Bottom: classes 3, 4 and 5.

Unsupervised methods: They measure the ‘quality’ of the model itself. Two main
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AMI Rand Index V measure Completeness Homogeneity

0.3373 0.2641 0.3405 0.3403 0.3407

Table 7: Supervised scores for clustering evaluation. See appendix 4.4 for definitions.

aspects are considered.

• Compactness: points inside a cluster should be as close to each other as possible.

• Separation: clusters should be widely spaced. Three possible distances between clus-
ters: closest members, most distant and centers of the clusters.

Dunn DB Silhouette CH SS PB PBM

0.3414 2.2879 0.1038 0.819 29.30 741.695 0.674

Table 8: Unsupervised scores for clustering evaluation. See appendix 4.4 for definitions.

4.3.2 Classification

Two standard techniques are used for the recognition of gesture primitives: K-nearest neigh-
borhoods (KNN) and Gaussian Mixture Models (GMM)[13].

4.3.3 K-nearest neighborhoods

For KNN, k is equal to the 4 closest neighborhoods. The final classification is assigned to the
most predominant class in an uniform way without weighting with respect to their closeness.
Several metric distances 9 where used, obtaining the best results in both, manual and automatic
classes, with Minkowski order 2 distances which is equal to Euclidean distances.

Accuracy Precision Recall F1 score

Manual primitives 0.6586 0.6472 0.6314 0.6366
Automatic primitives 0.8743 0.8776 0.8721 0.8724

Table 9: K-nearest neighborhoods classification metrics

As expected the classification of the automatic primitives is highly precise. K-means clus-
tering follows an orthogonality division of the space as well as the KNN search due to the
Euclidean distance used.

Analyzing the classification of manual primitives, we can see how the confusions are similar
to the problems found in the manual labeling. The main misclassification is between the classes
dynamic and smooth. The boundary between these two categories is diffuse and complex to
establish. The worse classification category is shaky which is a special case of periodic, related
with the shaking hands. This movement has a high frequency and normally a low amplitude
that explain the confusion with the steady and periodic classes.

9Euclidean, Manhattan, Chebyshev, Minkowski with order 3 and 4.
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Figure 23: Confusion matrix for the KNN classification of manual primitives.

4.3.4 Gaussian Mixture Model

The methodology follows a standard 10-fold cross-validation using the whole database, so that,
at each fold the 90% of gestures of each category is used for training and 10% for testing. The
training set is employed to create a GMM where the data points of each label are modeled as
one o more Gaussians.

In this context, the classification of a data point is the results of finding the label of the
Gaussian it mostly probably belong to. Several configuration have been used such as, modeling
each class with one or more Gaussians 10 and different covariance matrices11. Results are
presented in Table 10. The optimal configuration is with two Gaussians per class and diagonal
as a covariance matrix.

Accuracy Precision Recall F1 score

Manual primitives 0.624± 0.049 0.635± 0.048 0.648± 0.058 0.617± 0.047
Automatic primitives 0.893± 0.049 0.90± 0.047 0.891± 0.051 0.891± 0.052

Table 10: GMM mean and std of the 10-fold cross-validation classification.

In Figure 24 we can see the confusion matrix for the manual labeling. While the shaky
category is better recognized with the GMM, the rest of the categories are worse classified.
Specially, it is interested is to observe that the ‘smooth’ category. With the GMM method, the
confusion between ‘smooth’ and ‘dynamic’ is lower than with KNN method, but the confusion
between smooth and steady is increased.

101, 2, 3, 4 and 5.
11full, spherical, tied, diagonal.
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Figure 24: Confusion matrix for the GMM classification of manual primitives.

4.4 Appendix

4.4.1 Supervised methods definitions

• Mutual info score (MI): This is equal to the Kullback-Leibler divergence of the joint dis-
tribution with the product distribution of the marginals. It is independent of permutation
of the class or cluster label values.

• Adjusted mutual info score (AMI): This is a modified version of MI where the information
shared between classes is taken into account. The AMI returns a value of 1 when the
two partitions are identical and 0.0 for random labeling.

• Adjusted rand score: it considers all pairs of samples and counting pairs that are assigned
in the same or different clusters in the predicted and true clusterings. Similarity score
between -1.0 and 1.0. 0.0 value for random labeling and exactly 1.0 when the clusterings
are identical.

• V measure score or Normalized Mutual Information (NMI): normalization of MI. Results
are between 0 (no mutual information) and 1 (perfect correlation).

• Completeness score: if all the data points that are members of a given class are elements
of the same cluster. Score between 0.0 and 1.0.

• Homogeneity score: if all of its clusters contain only data points which are members of
a single class. Score between 0.0 and 1.0.
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4.4.2 Unsupervised methods definitions

• Dunn: It is computed as the square root of the minimum distance between any two clus-
ters (distance between the two closest points) divided by the square root of the maximum
distance between any two points in the same cluster. It relates separation/overlapping
with compactness. As it only measures the worse scenario it is highly susceptible to
influence from noise, outliers, or two clusters that happen to be close together. The
higher the value, the better the clustering will be.

• Davies-Bouldin: It compares each cluster to every other cluster. Similarity in measure for
each pair of clusters as the sum of the average distances of each point in the two clusters
to its respective center is divided by the distance between the two cluster centers. The
maximum values of this function for each cluster are averaged. A lower score will be the
result of less dispersion within clusters and more distance between clusters.

• Silhouette: It is the mean of every point score. Each individual value is define as the
difference between the average distance between that point and every other point in its
cluster (intra-cluster distance) and the minimum average distance between that point
and the other points in each other cluster (inter-cluster distance). It measure relates
separation to compactness by subtraction rather than division. As clustering improves,
the score will approach 1.

• Calinski-Harabasz (CH) or variance ratio criterion (VRC): Well-defined clusters have
a large compactness (inter-cluster distance or between-cluster variance BCSM) and a
small separation (intra-cluster distance or within-cluster variance (WCSM). CH relates
BCM to WCSM. The larger the VRC ratio, the better the data partition. A high score
is deserved.

• Sum-of-Squares (SS): The measure reverses the relationship between separation and
compactness. Since SS divides compactness by separation, a lower score indicates better
clusterings.

• Point biserial (PB): It finds the difference between the average intra-cluster distance
and the average inter-cluster distance. This measure is like Silhouette, except that it
measures separation from all non-cluster sharing points, rather than only those of the
closest cluster. A high score is deserved.

• PBM: It relates compactness with separation. While compactness is the sum of the dis-
tances between each point and its cluster centroid, separation is the maximum distance
between any two cluster centers. Separation is normalized over a measure of dispersion,
calculated as the sum of the distances between all points.

Project Title: SkAT-VG
Project Coordinator: Davide Rocchesso (IUAV)

52/54Contract No. FP7-ICT-2013-C FET-618067
http://www.skatvg.eu



Version 1.0, May 13, 2016

References

[1] Judith C. Brown. Calculation of a constant Q spectral transform. Journal of the Acoustical
Society of America, 89(1):425–434, 1991.

[2] Einar Heiberg. Matlab parallelization toolkit. v. 1.20, Nov. 2003.

[3] Matthew D. Hoffman. Approximate Maximum A Posteriori inference with entropic priors.
The Computing Research Repository, abs/1009.5761, 2010.

[4] Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-negative
matrix factorization. Nature, 401(6755):788–791, 1999.

[5] Pentti Paatero and Unto Tapper. Positive matrix factorization: A non-negative factor
model with optimal utilization of error estimates of data values. Environmetrics, 5(2):111–
126, 1994.

[6] Christian Schörkhuber, Anssi Klapuri, Nicki Holighaus, and Monika Dörfler. A Matlab
toolbox for efficient perfect reconstruction time-frequency transforms with log-frequency
resolution. In Audio Engineering Society Conference: 53rd International Conference:
Semantic Audio, Jan 2014.

[7] Madhusudana Shashanka, Bhiksha Raj, and Paris Smaragdis. Probabilistic latent variable
models as nonnegative factorizations. Computational Intelligence and Neuroscience, 2008.

[8] Madhusudana Shashanka, Bhiksha Raj, and Paris Smaragdis. Sparse overcomplete latent
variable decomposition of counts data. In J. C. Platt, D. Koller, Y. Singer, and S. T.
Roweis, editors, Advances in Neural Information Processing Systems 20, pages 1313–
1320. Curran Associates, Inc., 2008.

[9] Paris Smaragdis and Bhiksha Raj. Shift-invariant probabilistic latent component analysis.
Technical report, MERL, 2007.

[10] Gino Angelo Velasco, Nicki Holighaus, Monika Dörfler, and Thomas Grill. Constructing
an invertible constant-Q transform with non-stationary Gabor frames. In Proceedings of
Int.l Digital Audio Effects Conference (DAFX), pages 93–99, Paris, 2011.

[11] Chin J. Lin., Projected gradient methods for nonnegative matrix factorization. Neural
Computation, 19(10): 2756–2779, 2007.

[12] Arthur, D. and Vassilvitskii, S., K-means++: the advantages of careful seeding, Proceed-
ings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms. Society for
Industrial and Applied Mathematics Philadelphia, PA, USA. pp. 1027–1035, 2007

[13] Reynolds, D. A., Gaussian Mixture Models, Encyclopedia of Biometric Recognition,
Springer, Journal Article, February 2008.

Project Title: SkAT-VG
Project Coordinator: Davide Rocchesso (IUAV)

53/54Contract No. FP7-ICT-2013-C FET-618067
http://www.skatvg.eu



Version 1.0, May 13, 2016

[14] F. Bevilacqua, N. Schnell, N. Rasamimanana, J. Bloit, E. Flety, B. Caramiaux, J.
Françoise, E. Boyer. De-MO: designing action-sound relationships with the MO inter-
faces. In CHI ’13 Extended Abstracts on Human Factors in Computing Systems (CHI EA
’13). ACM, New York, NY, USA, 2907-2910, 2013.

[15] Daniel D. Lee and H. Sebastian Seung. Learning the parts of objects by non-negative
matrix factorization. Nature, 401(6755): 788-791, 1999.

[16] Christopher Torrence and Gilbert P Compo. A practical guide to wavelet analysis. Bulletin
of the American Meteorological society, 79(1):6178, 1998.

Project Title: SkAT-VG
Project Coordinator: Davide Rocchesso (IUAV)

54/54Contract No. FP7-ICT-2013-C FET-618067
http://www.skatvg.eu


	Executive summary
	Informed and Fusion classifiers
	KTH phonetic transcription system outputs
	KTH descriptors definitions
	Informed Classifier
	Fusion Classifier
	Early fusion
	Late fusion


	Automatic estimation of Audio Primitives and recognition of vocal/gesture imitation using audio primitives
	Ircam dataset of manual annotation into audio primitives
	Acoustic cues definition
	Annotated dataset description
	Distribution of the annotated labels
	Global distribution.
	Distribution by imitation category.
	Distribution by subjects.

	Automatic derivation of audio primitives using SI-PLCA
	Choice of unsupervised learning approach
	SI-PLCA methods
	Application of SI-PLCA to automatically find audio primitives
	Comparison between manually annotated and automatically found by SI-PLCA audio primitives
	Recognition of imitation categories using automatically found audio primitives


	Gestures Recognition
	Database
	Features extraction.
	Sensors.
	Wavelet.
	Nonnegatice Matrix Factorization (NMF).
	Complementary features.
	Normalization.
	Discussion.

	Clustering
	Clustering evaluation
	Classification
	K-nearest neighborhoods
	Gaussian Mixture Model

	Appendix
	Supervised methods definitions
	Unsupervised methods definitions



